Publications
2024
Ninein domains required for its localization, association with partners dynein and ensconsin, and microtubule organization.
Tillery MML, Zheng C, Zheng Y, Megraw TL
Mol Biol Cell. 2024 1;35(9). doi: 10.1091/mbc.E23-06-0245.PMID: 34943843
A distinct isoform of Msp300/Nesprin organizes the perinuclear microtubule organizing center in adipose cells.
Morton GM, Toledo MP, Zheng Y, Zheng C, Megraw TL
bioRxiv [Preprint]. 2024. doi: 10.1101/2024.06.28.601268.
2023
Evidence for intraflagellar transport in butterfly spermatocyte cilia.
Gottardo M, Riparbelli MG, Callaini G, Megraw TL.
Cytoskeleton. 2023 May-Jun;80(5-6):112-122. doi: 10.1002/cm.21755. Epub 2023 Apr 10.PMID: 37036073
2021
Coordination of Zika Virus Infection and Viroplasm Organization by Microtubules and Microtubule-Organizing Centers.
Buchwalter RA, Ogden SC, York SB, Sun L, Zheng C, Hammack C, Cheng Y, Chen JV, Cone AS, Meckes DG Jr, Tang H, Megraw TL.
Cells. 2021 Nov 27;10(12):3335. doi: 10.3390/cells10123335.PMID: 34943843
MiR-193b deregulation is associated with Parkinson's disease.
Baghi M, Yadegari E, Rostamian Delavar M, Peymani M, Ganjalikhani-Hakemi M, Salari M, Nasr-Esfahani MH, Megraw TL, Ghaedi K.
J Cell Mol Med. 2021 May 20;25(13):6348-60. doi: 10.1111/jcmm.16612. Online ahead of print.PMID: 34018309.
Design of advanced siRNA therapeutics for the treatment of COVID-19.
Niktab I, Haghparast M, Beigi MH, Megraw TL, Kiani A, Ghaedi K.
Meta Gene. 2021 Sep;29:100910. doi: 10.1016/j.mgene.2021.100910. Epub 2021 May 8.PMID: 33996501.
2020
Zheng Y, Buchwalter RA, Zheng C, Wight EM, Chen JV, Megraw TL (2020)
A perinuclear microtubule-organizing centre controls nuclear positioning and basement membrane secretion.
Nat Cell Biol. doi: 10.1038/s41556-020-0470-7.
The Enigma of Centriole Loss in the 1182-4 Cell Line.
Debec A, Loppin B, Zheng C, Liu X, Megraw TL.
Cells. 2020 May 23;9(5):1300. doi: 10.3390/cells9051300.
Rabiee F, Lachinani L, Ghaedi S, Nasr-Esfahani MH, Megraw TL, Ghaedi K.
New insights into the cellular activities of Fndc5/Irisin and its signaling pathways.
Cell Biosci. 2020 Mar 30;10:51. doi: 10.1186/s13578-020-00413-3. eCollection 2020.PMID: 32257109
2019
Zheng Y, Buchwalter RA, Zheng C, Wight EM, Chen JV, Megraw TL (2019)
A perinuclear microtubule-organizing center controls nuclear positioning and basement membrane secretion.
BioRxiv. doi.org/10.1101/2019.12.24.888065. (Preprint and extended version)
Ghoveud E, Teimuri S, Vatandoost J, Hosseini A, Ghaedi K, Etemadifar M, Nasr Esfahani MH, Megraw TL. (2019)
Potential biomarker and therapeutic LncRNAs in Multiple Sclerosis through targeting memory B cells.
Neuromolecular Med. 22(1):111-120. doi: 10.1007/s12017-019-08570-6.
Blake-Hedges C, Megraw TL. (2019)
Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster.
Results Probl Cell Differ. 67:277-321. doi: 10.1007/978-3-030-23173-6.
Hosseini A, Teimuri S, Ehsani M, Rasa SMM, Etemadifar M, Nasr Esfahani MH, Megraw TL, Ghaedi K. (2019)
LncRNAs associated with multiple sclerosis expressed in the Th1 cell lineage
J Cell Physiol. 234(12):22153-22162. doi: 10.1002/jcp.28779.
Zhou T, Zheng Y, Sun L, Badea SR, Jin Y, Liu Y, Rolfe AJ, Sun H, Wang X, Chen Z, Huang Z, Zhao N, Sun X, Li J, Fan J, Lee C, Megraw TL, Wu W, Wang G, Ren Y. (2019)
Engulfment and autophagic processing of myelin debris by microvascular endothelial cells promote angiogenesis, inflammation and fibrotic scar formation in demyelinating disorders
Nature Neuroscience, 22(3):421-435. doi: 10.1038/s41593-018-0324-9
2018
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter R, Megraw TL (2018)
Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster
Cells. 28:7(9)
Teimuri S, Hosseini A, Rezaenasab A, Ghaedi K, Ghoveud E, Etemadifar M, Nasr-Esfahani MH, Megraw TL. (2018)
Integrative Analysis of lncRNAs in Th17 Cell Lineage to Discover New Potential Biomarkers and Therapeutic Targets in Autoimmune Diseases
Molecular Therapy: Nucleic Acids. 12: 393-404
2017
Chen JV, Buchwalter RA, Kao LR, Megraw TL (2017)
A Splice Variant of Centrosomin Converts Mitochondria to Microtubule-Organizing Centers.
Curr Biol. 27: 1928-1940
Manojlovic Z, Earwood R, Kato A, Perez D, Cabrera OA, Didier R, Megraw TL, Stefanovic B, Kato Y (2017)
La-related protein 6 controls ciliated cell differentiation.
Cilia. 1629: 141-154
2016
Debec A, Megraw TL, Guichet A (2016)
Methods to Establish Drosophila Cell Lines.
Methods Mol Biol. 1478: 333-351
Jana SC, Bettencourt-Dias M, Durand B, Megraw TL (2016)
Drosophila melanogaster as a model for basal body research.
Cilia. 1629: 141-154
Zheng Y, Mennella V, Marks S, Wildonger J, Elnagdi E, Agard D, Megraw TL (2016)
The Seckel syndrome and centrosomal protein Ninein localizes asymmetrically to stem cell centrosomes, but is not required for normal development, behavior, or DNA damage response in Drosophila.
Mol Biol Cell. 2016 Apr 6. Link
Buchwalter R, Chen JV, Zheng Y, Megraw TL (2016)
The centrosome in cell division, development and disease.
eLS . DOI: 10.1002/9780470015902.a0020872
2015
Chen, J. V., Kao, L.R., Jana, S.C., Sivan-Loukianova, E., Mendonça, S., Cabrera, O.A., Singh, P., Cabernard, C., Eberl, D.F., Bettencourt-Dias, M., and Megraw, T. L. (2015).
Rootletin organizes the ciliary rootlet to achieve neuron sensory function in Drosophila.
Journal of Cell Biology 211(2):435-53. Publication link
Tozser, J., Earwood, R., Kato, A., Brown, J., Tanaka, K., Didier, R., Megraw, T.L., Blum, M., and Kato, Y. (2015).
TGF-beta Signaling Regulates the Differentiation of Motile Cilia.
Cell Reports 11, 1000-1007. Publication link
Man, X., Megraw, T.L., and Lim, Y.P. (2015).
Cep68 can be regulated by Nek2 and SCF complex.
European Journal of Cell Biology 94, 162-172. Publication link
Bingol, K., Li, D.W., Bruschweiler-Li, L., Cabrera, O.A., Megraw, T., Zhang, F., and Bruschweiler, R. (2015).
Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra.
ACS Chemical Biology 10, 452-459. Publication link
2014
Galletta, B.J., Guillen, R.X., Fagerstrom, C.J., Brownlee, C.W., Lerit, D.A., Megraw, T.L., Rogers, G.C., and Rusan, N.M. (2014).
Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies.
Mol Biol Cell 25, 2682-2694. Publication link
Chen, J.V., and Megraw, T.L. (2014).
Mother centrioles do a cartwheel to produce just one daughter.
Developmental Cell 30, 111-112. Publication link
Chen, J.V., and Megraw, T.L. (2014).
Spermitin: a novel mitochondrial protein in Drosophila spermatids.
PloS one 9, e108802. Publication link
2013 --
Riparbelli, M.G., Cabrera, O.A., Callaini, G., and Megraw, T.L. (2013).
Unique properties of Drosophila spermatocyte primary cilia.
Biology Open 2, 1137-1147. Publication link
Chen, J.V., and Megraw, T.L. (2013).
Cenexin1 and Odf2: splice variants with diverged cilium functions.
Cell Cycle 12, 869. Publication link
Riparbelli, M.G., Callaini, G., and Megraw, T.L. (2012).
Assembly and persistence of primary cilia in dividing Drosophila spermatocytes.
Developmental Cell 23, 425-432. Publication link
Kao, L.R., and Megraw, T. (2012).
Cytokinesis: RhoGEFs control a developmental cleavage switch.
Current Biology 22, R916-917. Publication link
Megraw, T.L., Sharkey, J.T., and Nowakowski, R.S. (2011).
Cdk5rap2 exposes the centrosomal root of microcephaly syndromes.
Trends in Cell Biology 21, 470-480. Publication link
Megraw, T. (2011).
PP2A targets SAS-5 in centriole assembly.
Developmental Cell 20, 416-417. Publication link
Gopalakrishnan, J., Mennella, V., Blachon, S., Zhai, B., Smith, A.H., Megraw, T.L., Nicastro, D., Gygi, S.P., Agard, D.A., and Avidor-Reiss, T. (2011).
Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome.
Nature Communications 2, 359. Publication link
Barrera, J.A., Kao, L.R., Hammer, R.E., Seemann, J., Fuchs, J.L., and Megraw, T.L. (2010).
CDK5RAP2 regulates centriole engagement and cohesion in mice.
Developmental Cell 18, 913-926. This paper was featured on the cover. Publication link
Mottier-Pavie, V., and Megraw, T.L. (2009).
Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly.
Molecular Biology of the Cell 20, 2605-2614. This paper was featured on the cover. Publication link
Kao, L.R., and Megraw, T.L. (2009).
Centrocortin cooperates with centrosomin to organize Drosophila embryonic cleavage furrows.
Current Biology 19, 937-942. Publication link
Kotadia, S., Kao, L.R., Comerford, S.A., Jones, R.T., Hammer, R.E., and Megraw, T.L. (2008).
PP2A-dependent disruption of centrosome replication and cytoskeleton organization in Drosophila by SV40 small tumor antigen.
Oncogene 27, 6334-6346. Publication link
Zhang, J., and Megraw, T.L. (2007).
Proper recruitment of gamma-tubulin and D-TACC/Msps to embryonic Drosophila centrosomes requires Centrosomin Motif 1.
Molecular Biology of the Cell 18, 4037-4049. Publication link
Kao, L.R., and Megraw, T.L. (2004).
RNAi in cultured Drosophila cells.
Methods in Molecular Biology 247, 443-457. Publication link
Megraw, T.L., Kilaru, S., Turner, F.R., and Kaufman, T.C. (2002).
The centrosome is a dynamic structure that ejects PCM flares.
Journal of Cell Science 115, 4707-4718. Publication link
Megraw, T.L., Kao, L.R., and Kaufman, T.C. (2001).
Zygotic development without functional mitotic centrosomes.
Current Biology : CB 11, 116-120. Publication link
Megraw, T.L., and Kaufman, T.C. (2000).
The centrosome in Drosophila oocyte development.
Current Topics in Developmental Biology 49, 385-407. Publication link
Megraw, T.L., Li, K., Kao, L.R., and Kaufman, T.C. (1999).
The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila.
Development 126, 2829-2839. Publication link
Megraw, T., Kaufman, T.C., and Kovalick, G.E. (1998).
Sequence and expression of Drosophila Antigen 5-related 2, a new member of the CAP gene family.
Gene 222, 297-304. Publication link
Li, K., Xu, E.Y., Cecil, J.K., Turner, F.R., Megraw, T.L., and Kaufman, T.C. (1998).
Drosophila centrosomin protein is required for male meiosis and assembly of the flagellar axoneme.
The Journal of Cell Biology 141, 455-467. Publication link
Cho, J.H., Ha, S.J., Kao, L.R., Megraw, T.L., and Chae, C.B. (1998).
A novel DNA-binding protein bound to the mitochondrial inner membrane restores the null mutation of mitochondrial histone Abf2p in Saccharomyces cerevisiae.
Molecular and Cellular Biology 18, 5712-5723. Publication link
Kao, L.R., Megraw, T.L., and Chae, C.B. (1996).
SHM1: a multicopy suppressor of a temperature-sensitive null mutation in the HMG1-like abf2 gene.
Yeast 12, 1239-1250. Publication link
Megraw, T.L., Kao, L.R., and Chae, C.B. (1994).
The mitochondrial histone HM: an evolutionary link between bacterial HU and nuclear HMG1 proteins.
Biochimie 76, 909-916. Publication link
Megraw, T.L., and Chae, C.B. (1993).
Functional complementarity between the HMG1-like yeast mitochondrial histone HM and the bacterial histone-like protein HU.
The Journal of Biological Chemistry 268, 12758-12763. Publication link
Kao, L.R., Megraw, T.L., and Chae, C.B. (1993).
Essential role of the HMG domain in the function of yeast mitochondrial histone HM: functional complementation of HM by the nuclear nonhistone protein NHP6A.
Proceedings of the National Academy of Sciences 90, 5598-5602. Publication link