Overview of MASCAL Training Exercise

Shawn L. Shah
Acknowledgements

Kenneth G. Proctor, PhD
Michael P. Ogilvie, MD, MBA
Mark L. Ryan, MD
Ronald J. Manning, RN, MPH
Ryder Trauma Center
University of Miami Miller School of Medicine
Reduce Trauma M & M...

Training

Novel therapeutic strategies

Novel monitoring strategies
A Profile of Combat Injury

Howard R. Champion, MD, FRCS (Edin), FACS, COL (Ret) Ronald F. Bellamy, MD, FACS, Colonel P. Roberts, MBE, QHS, MS, FRCS, L/RAMC; Ari Leppaniemi, MD, PhD

<table>
<thead>
<tr>
<th></th>
<th>Head & neck (%)</th>
<th>Thorax (%)</th>
<th>Abdomen (%)</th>
<th>Limbs (%)</th>
<th>Other (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World War II</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Korea</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>67</td>
<td>2</td>
</tr>
<tr>
<td>Vietnam</td>
<td>14</td>
<td>7</td>
<td>5</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Gulf War (US)</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>56</td>
<td>18</td>
</tr>
<tr>
<td>Chechnya</td>
<td>24</td>
<td>9</td>
<td>4</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Somalia</td>
<td>20</td>
<td>8</td>
<td>5</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>16</td>
<td>12</td>
<td>11</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

During a 23 d period, 555 FST evaluated 154 patients

<table>
<thead>
<tr>
<th></th>
<th>Head & neck (%)</th>
<th>Thorax (%)</th>
<th>Abdomen (%)</th>
<th>Limbs (%)</th>
<th>Other (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iraq</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>56</td>
<td>13</td>
</tr>
</tbody>
</table>

US soldiers, POW, civilians
U. S. Army Forward Surgical Teams

Reserve or regulars ± trauma training

Rapidly mobile; deployed near combat front

Self-contained---> 30 casualties/72 hrs

Since 9/11, >90 FSTs have been evaluated at Univ of Miami, incl all sent to Iraq & Afghanistan
The problems...

• Long delays are common
• Casualty waves overwhelm resources
• Less than ideal conditions
• Greatest good for greatest number
• On the job training
On multiple severely-injured casualties, demonstrate and evaluate individual and FST capabilities to

1) triage,
2) resuscitate,
3) damage control,
4) stabilize for evacuation
Design of MASCAL Exercise

- slide presentation 20 min
- FST organization/prep 1 hr
- Airway/anatomy demo 10 min
- Animal Lab 2-4 hr
- Skills lab (± ATOM) <1 hr
- After action review 1-2 hr

→ 12-13 days lessons applied
Unfamiliar, crowded, obnoxious environment...
Radio: in 2 min; incoming helicopter; wounded on-board!!

Patient Abel

50% TBSA burn
<simulated>

Inhalation injury
<simulated>
Patient Abel

50% TBSA burn

Inhalational injury

1°/2° survey
Stabilize
Resuscitate?
Parkland burn formula?
Optimal vent settings?

Radio: 4 wounded incoming!!!
Abdominal wall lac
Extensive bowel evisceration thru R anterior abd
Unexploded RPG impaled in R anterior abd

Patient Baker
R-L transmediastinal penetr wound
R lateral oblique thoracoabd penetr wound

Patient Charles
Abdominal wall lac
Extensive bowel evisceration thru R anterior abd
Unexploded RPG impaled in R anterior abd

Patient David
R scalp lac
R fem art lac
Partial R lower extrem amp with soft tissue degloving

Patient Edgar
R neck, zone II, penetr wound
30% TBSA upper extrem burns
Multiple ant and post frag wounds
Supply shortages
Resource/personnel allocation?
Power Failure

Supply shortages?
Communication??
Command??
Chaos!!
In OR1:
HR=40
SAP=45
Radio: 2-4 casualties in 2 min!!
"Faulty intelligence"
End exercise

Skills lab ± ATOM

After Action Review

Time line in each “clinically relevant” model un_masks --->
- situational triage/1° & 2° survey
- communication/team dynamics
- resource utilization
Surprising “wake-up call”

With every FST, including those with combat experience, collapses in either situational triage, 1°/2° surveys, and/or basic ATLS principles (ABCs) resulting in *preventable deaths*

By prospectively identifying deficiencies, future FST performance during actual MASCAL should be improved

Basic principles are being applied to develop new concepts in research and training for civilian & military trauma care
Condensation of Neuronal Nuclei in the Caudate and Putamen of a Huntington mouse model

Daniella Barker
Summer Research 2010
Charles Ouimet, Ph.D.
Huntington’s Disease

Familial inheritance of a movement disorder with choreatic movements

Signs and symptoms:

Motor: involuntary movements
- chronic, progressive chorea

Psychiatric: mood changes, apathy, depression, hostility, personality changes, psychotic behavior

Cognitive: dementia, working memory deficits, loss of concentration
Polyglutamine (PolyQ) Disorder

17-36 repeats average length for normal protein

> 38 repeats leads to Huntington’s disease

huntingtin (IT15)
Neurons in the caudate and putamen degenerate
R6/2 Mice: A Huntington Model

- Human gene for huntingtin protein with 160 CAG repeats
- Huntington phenotype = clumsiness
- Mice die at age 13-17 weeks
- Caudate and putamen do not degenerate
Measuring Nuclei
R6/2 Mice: A Huntington Model

<table>
<thead>
<tr>
<th></th>
<th>Wild Type Average Nuclei Area (μ^2)</th>
<th>Huntington Carrier Average Nuclei Area (μ^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>39.33</td>
<td>31.64</td>
</tr>
<tr>
<td>Female</td>
<td>46.45</td>
<td>42.11</td>
</tr>
</tbody>
</table>
Accounting for the Size Difference

- **Apoptosis?**
 - No literature demonstrating that apoptosis responsible for neuronal death in HD
 - TUNEL stain for apoptosis in the same model was negative
 - Gillian Bates’ lab, Dr. Ouimet
 - Also, TUNEL staining in human brains negative for apoptosis
 - Dr. Ouimet

- **Reduced gene expression?**
 - The role of histones
A. Regulation of DNA Methylation by Histone Acetylation

Heterochromatin (Chromatin Supercoiled) Transcription blocked

HAT HDAC

Euchromatin (Chromatin Relaxed) Transcription permitted

http://www.accesscellscience.com/NE/CG/nucleosome.gif
DAPI staining: chromatin condensation

A

B

WT

R6/2
HDAC4 Knockout

R6/2 Mouse

Huntington Phenotype

R6/2 Mouse with HDAC4 Knockout

No Huntington Phenotype
Repetitive and stereotyped movements (RSM) and gait disturbances in children under 36 months with Autism Spectrum Disorder (ASD)

Cindy Susan Lorelei Turco
Advisors: Dr. Kathy Lee, Dr. Amy Wetherby
Introduction

- DSM-IV Diagnostic Criteria
 Autism Spectrum Disorder (ASD)
 - Impairments in social interaction
 - Impairments in communication
 - Restricted interests and *repetitive & stereotyped movements* (RSM)

(American Psychiatric Association, 2000).
Gait and postural disturbances

- Examples- tandem walking with outstretched arms, toe walking, shuffling, and asymmetrical movements involving arms and legs during gait
- Truncal and postural instability
 - Manifested by forward falls
- Role of the basal ganglia and cerebellum
 - Cerebellar Purkinje cell depletion → repetitive behavior (lever pressing)
 - Martin, Goldowitz, & Mittleman, 2010
 - Relationship to Parkinson’s disease- shared pathology in basal ganglia?
 - Vilensky, Damasio, and Maurer (1981)
Purpose

- To investigate early motor behavioral characteristics of children later diagnosed with autism, focusing on extrapyramidal motor functions.
- Determine if the atypical motor behaviors, gait disturbances, and postural instabilities can be observed before 36 months of age and in what settings.
- To develop an emerging coding system to be used to assess the aforementioned atypical motor behaviors, gait disturbances, and postural instabilities.
Participants and Methods

- Participants- 11 children (9 boys, 2 girls) under 36 months with ASD and a Mullen Scales of Early Learning score 1 SD below the mean in fine and/or gross motor development.
- Participants videotaped in 1, 2, or 3 settings
 - Administration of the Communication and Symbolic Behavior Scales Developmental Profile (CSBS)
 - n=6
 - Administration of Autism Diagnostic Observation Schedule (ADOS)
 - n=6
 - Systematic observation at home
 - n=4
- Behaviors observed and data from participants obtained from videos
Results

RSM

- 3 categories based on location (n=11)
 - Fingers and hands (7/11)
 - Arms, shoulders, legs (10/11)
 - Head, trunk, body (8/11)

Gait and Posture

- Gait disturbances observed in all at-home samples (4/4) and all ADOS administrations (6/6)
 - Heel, toe walking
 - Forearm out
 - Shuffling gait
- Postural instabilities in 3/4 at-home samples and 5/6 ADOS administrations
 - Loss of balance → falls
 - Weight shift (sitting- sacrum, standing, side)

Thelen’s taxonomy of 47 repetitive behaviors, 1979
The importance of the primary care physician– early detection

- Strongly advocated by the American Academy of Pediatrics.
- AAP recommends
 1. Surveillance at routine visits
 2. Standardized screening tool administration at any given visit
 3. Screening of all 18- and 24-month olds for ASD using a standardized autism-specific screening tool.
- Early detection → early intervention

Council on Children With Disabilities, Section on Developmental Behavioral Pediatrics,
Bright Futures Steering Committee, & Medical Home Initiatives for Children With
Special Needs Project Advisory Committee, 2006
Future Directions

- Further development of the coding system.
 - What would be the best setting for observing these behaviors?
- How many children with autism display these extrapyramidal signs (1/2 ? 1/3?)
 - This study focused on participants with known delay in fine and gross motor development.
References

Acknowledgments

- Advisors- Dr. Lee and Dr. Wetherby
- Sheri Stronach and the
- Center for Autism and Related Disabilities
Low-Contrast Sensitivity and Gait Analysis in Parkinson’s Disease: The Effects of High Contrast Yellow Lenses

Austin Henkel & Luby Sidoff
January 6, 2011
What is Parkinson’s Disease?

- Parkinson’s disease (PD) is a degenerative disease of the central nervous system, which affects approximately 1% of persons over age 60.
- Motor symptoms of PD are typically identified in the clinical setting and can include tremor, rigidity, shuffling gait, and postural instability.
- Common non-motor symptoms include autonomic dysfunction, sensory disturbances, and sleep difficulties.
- The symptoms of PD likely result from the dysfunction of dopamine-secreting neurons located in the substantia nigra of the midbrain.
Visual Difficulties in PD

• However, recent evidence has shown that visual symptoms are common in PD patients as well.
• PD patients have been shown to have decreased contrast sensitivity (CS), or the ability to discriminate differences between the amounts of light reflected from two adjacent surfaces. \(^1\)
• Decreased CS has been implicated as a predictor for increased fall risk in the PD population.
The Parkinsonian Retina

- Post-mortem biopsies indicate that PD patients have decreased retinal dopamine concentrations as compared to healthy controls.\(^2\)
- It is theorized that reduced activity of dopaminergic retinal amacrine cells could be responsible for decreases in visual contrast sensitivity observed in PD patients.\(^3\)
Improving Contrast Sensitivity

• Studies have shown that commercially available yellow-tinted lenses can increase CS in healthy volunteers. 4

• In our study, we have investigated whether yellow lenses could be adapted as a potential strategy to improve contrast sensitivity in PD patients under conditions of low luminance, when falls are more likely to occur.
Methods

• Participants

• Measures
 • Contrast Sensitivity
 • Optical Coherence Tomography (OCT)
 • Unified Parkinson’s Disease Rating Scale (UPDRS)
 • Gait Measurement
Participants

• 20 Patients with Parkinson’s recruited by Dr. Maitland during routine examination times in the Neuro-Ophthalmology and Balance Disorders Clinic
 • Excluded only if
 • Legally blind
 • Unable to independently ambulate
 • Have any other neurological condition that might impair gait
 • Have generalized medical disorder that might be compromised by walking or compromise walking (e.g., heart failure, etc.)
Measures

• Contrast Sensitivity
 • Measured using Low-Contrast Sloan Letter Charts (100%, 2.5%, and 1.25% contrast)
 • Room lighting measured to be between 80-100 candela/m²; same room used when testing each patient
 • Chart placed 2 meters from patient’s eyes with premeasured string and held perpendicular to the floor to eliminate any potential glare
 • Patients wore their usual distance correction for testing
 • Patients were tested in the same manner each time and a contrast sensitivity score was determined using the visual acuity equivalent of a standard Snellen visual acuity chart
Sloan Contrast Sensitivity Testing
Optical Coherence Tomography (OCT)

- Takes a non-invasive, non-contact optical picture of the retina
- Spectral imaging technique that uses fast scan programs and is similar to ultrasound
- Captures 3D and HD line scans of the retina
- Imaging done on both the macula and optic nerve of each eye
- All data was reviewed by Dr. Maitland for pathology
Ocular Coherence Tomography (OCT)
Unified Parkinson’s Disease Rating Scale (UPDRS)

- Standardized tool used nationally to quantify a patient’s disability in Parkinson’s
- Quantifies a patient’s functioning and symptoms as it relates to their PD
- Covers mentation, behavior, mood, and activities of daily living and how their PD has affected these functions over the previous week’s time
- Motor exam also given to quantify walking, tremor, and rigidity
- If patient has been experiencing dyskinesias or other complications stemming from their PD, they were asked additional questions
UPDRS

• For our purposes, the first four questions regarding mentation, behavior, and mood were omitted
• Patients were asked about dyskinesias and other complications only if they were experiencing them
• UPDRS scores were adjusted accordingly
Gait Measurement

• Patients walked on a 22 foot GaitRite (CIR Systems, Inc.) gait pad that measures 102 parameters of gait
• As the patient ambulates down the walkway, the system captures the relative arrangement, geometry, and applied pressure of each footfall as a function of time
• Ambulation time, velocity, right and left footfall pressure and duration, and a Functional Ambulation Performance (FAP) score are derived and transferred to computer software for storage and analysis
FAP

• The FAP score is a quantitative means of assessing gait based on specific spatial and temporal gait parameters.

• It is also useful as a predictor of fall risk in the elderly population\(^5\).

• Further, FAP scores for PD patients have been shown to be significantly lower than those of age-matched controls\(^6\).
Gait Measurement

• Each patient walked four different trials in conditions of low illumination (less than 5 candelas)
• 2 trials with wooden platform (29” long x 7” high x 42” wide); 1 trial with high-contrast yellow lenses, 1 trial without them
• 2 trials without the wooden platform; 1 trial with high-contrast yellow lenses, 1 trial without them
GaitRite
GaitRite
GaitRite
Results

• In the trials without the step, the FAP scores improved with statistical significance when the patients wore the high contrast yellow lenses
 • p value = 0.013; significant at the 5% level
• In the trials with the step, there was no statistically significant improvement in the FAP scores when the high contrast yellow lenses were used
 • p value = 0.441; NOT significant at the 5% level
Acknowledgements

• Charles G. Maitland, MD
• Leonard L. LaPointe, PhD
• Charles Saunders, PhD
• Staff of The Neuro-Ophthalmology and Balance Disorders Clinic
• Research Participants
References

Florida State University
College of Medicine

End of Life Care & Palliative Medicine
Student Summer Fellowship
Background
...Blah Blah.
Blah, blah blah.

AND WHY SHOULD I CARE?
1,450,000

of individual patients who received hospice care in 2008.

More than 1/3 of all American deaths in that year.
Goals & Objectives

- Improve Knowledge Base
- Increase Early Exposure & Comfort
- Improve Scholarship & Communication Skills
Knowledge Base

- Clinical & Basic Science:
 - Dying Process
 - Common Causes of Death in Hospice
- Social factors surrounding death
 - Religious
 - Psychological
 - Cultural & Ethnic
 - Systemic Effects on Death
- Legal & Ethical Issues
- Interdisciplinary Team Model
Experiential Activities

- Big Bend Hospice-House Rounds
- Periodic Ethics Board Meetings
- Interdisciplinary Team-Member Shadowing
- New possibilities for next year @ TMH, Telemedicine & in-home experiences.
Scholarship & Communication Skills

- Personal reflection
 - experiential & knowledge base activities
- Research in areas of interest
- Presentations
 - Small group & FSU COM
 - National Conference & forums
- Development workshops in:
 - Presenting Skills
 - Adult Education
 - Group & Team Dynamics
2010 Fellows

Each fellow completed all requirements of the fellowship earning a Certificate of Recognition.

Patrick Gill
Shannon Scott
Joshua Smith
Angela Green
Mentors & Faculty

- Dr. Ken Brummel-Smith
- Dr. Jonathan Appelbaum
- Big Bend Hospice of Tallahassee
 - Dr. David Robinson
 - Dr. Ron Hartsfield
- Professor Marshall Kapp
- Michelle Cormier
End of Life & Palliative Medicine Summer Fellowship 2011

Applications will be available early March

Michelle Cormier mmc07@med.fsu.edu
Angela Green apg05@med.fsu.edu