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SUMMARY

Most short-lived eukaryotic proteins are degraded
by the proteasome. A proteolytic core particle (CP)
capped by regulatory particles (RPs) constitutes
the 26S proteasome complex. RP biogenesis culmi-
nates with the joining of two large subcomplexes,
the lid and base. In yeast and mammals, the lid
appears to assemble completely before attaching
to the base, but how this hierarchical assembly is
enforced has remained unclear. Using biochemical
reconstitutions, quantitative cross-linking/mass spec-
trometry, and electron microscopy, we resolve the
mechanistic basis for the linkage between lid bio-
genesis and lid-base joining. Assimilation of the final
lid subunit, Rpn12, triggers a large-scale conforma-
tional remodeling of the nascent lid that drives
RP assembly, in part by relieving steric clash with
the base. Surprisingly, this remodeling is triggered
by a single Rpn12 « helix. Such assembly-coupled
conformational switching is reminiscent of viral
particle maturation and may represent a commonly
used mechanism to enforce hierarchical assembly in
multisubunit complexes.

INTRODUCTION

The eukaryotic proteome is constantly remodeled to control cell
function. This remodeling depends heavily on protein degrada-
tion by the ubiquitin-proteasome system (UPS) (Finley, 2009;
Ravid and Hochstrasser, 2008). The UPS consists of a cascade
of enzymes that catalyze the transfer of the protein ubiquitin to
protein substrates destined for degradation by the 26S protea-
some. The proteasome is a 2.5 MDa ATP-dependent protease
complex composed of a barrel-shaped proteolytic core particle
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capped on its open ends by 19S regulatory particles (Tomko and
Hochstrasser, 2013). Under certain conditions, the regulatory
particles (RP) can be divided into subcomplexes called the lid
and base (Glickman et al., 1998). The lid consists of nine sub-
units, Rpn3, 5-9, 11, 12, and Sem1. The base contains a ring
of six AAA+ family ATPases, Rpt1-6, and the non-ATPase
subunits Rpn1, 2, 10, and 13. The lid removes the ubiquitin tag
from substrates, whereas the base uses mechanical energy
derived from ATP hydrolysis to unfold substrates and insert
them into the core particle (CP) for destruction (Nyquist and Mar-
tin, 2014; Tomko and Hochstrasser, 2013).

The proteasome consists of at least 33 distinct subunits. Its
assembly is a tightly coordinated process that relies both on
dedicated extrinsic assembly chaperones and intrinsic features
of the subunits themselves. Whereas both the CP and RP base
depend heavily on assembly chaperones for efficient assembly,
the lid can assemble independently of any additional eukaryotic
factors (Fukunaga et al., 2010; Tomko and Hochstrasser, 2011,
2014). Lid biogenesis appears to follow a defined assembly
sequence that culminates with addition of the Rpn12 subunit
to a nearly complete lid intermediate consisting of Rpn3, 5-9,
11, and Sem1, called lid particle 2 (LP2) (Tomko and Hoch-
strasser, 2011). Recombinant lid forms efficiently in the absence
of the base or CP (Lander et al., 2012; Tomko and Hochstrasser,
2014). Importantly, LP2 is unable to participate in further 26S
proteasome assembly unless Rpn12 is present to complete lid
formation (Tomko and Hochstrasser, 2011).

Incorporation of Rpn12 into LP2 licenses the resultant com-
plex for assembly into full proteasomes, but the molecular mech-
anism underlying this critical function for Rpn12 has remained
obscure (Tomko and Hochstrasser, 2011). In the mature 26S
proteasome, Rpn12 occupies a peripheral position within the
RP (Figures 1A and 1B) and contributes minimally to the interface
between lid and base (Matyskiela et al., 2013; Unverdorben
etal., 2014). Despite this, the LP2 intermediate has no detectable
affinity for the base in the absence of the latter subunit (Tomko
and Hochstrasser, 2011).
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Figure 1. Reconstitution of the 19S Regulatory Particle Using Purified Components

(A) Pseudoatomic model of the proteasome regulatory particle (RP) (from PDB 4CR2) indicating the position of Rpn12 (red) with respect to (yellow) and base (blue)
subunits. For clarity, the CP, as well as the RP subunits Rpn1 and Rpn10, is omitted.

(B) The Rpn12-Glu271 residue (shown in cyan) lies near the lid-base interface. CP, Rpn1, and Rpn10 have been omitted as in (A).

(C) RP assembly depends on Rpn12. The indicated recombinant components (1 uM) were incubated together in the presence of 1 mM ATP and 10 uM re-
combinant Rpn10 for 20 min at 30°C before separation by native PAGE. Gels were either stained with Coomassie brilliant blue or transferred to PVDF membranes
followed by immunoblotting with antibodies to FLAG (on the Rpt1 base subunit), HA (on the Rpn7 LP2 subunit), or Rpn12.

(D) The rpn12-E271K mutation weakens lid-base interaction without interfering with lid formation. The indicated components (1 uM) were incubated with 1 mM
ATP and 10 uM Rpn10 before analysis as in (C).

See also Figure S1.
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Proteasomes have recently emerged as important targets for
the treatment of certain cancers (Crawford and Irvine, 2013).
All of the anti-proteasome drugs currently FDA approved or in
clinical trials are inhibitors of the CP active sites (Dou and
Zonder, 2014), but drug resistance is already a significant prob-
lem (Cheriyath et al., 2007; Richardson et al., 2003). Interference
with proteasome assembly could provide a valuable alternative
strategy for chemotherapy. As incorporation of Rpn12 is obliga-
tory for subsequent RP assembly, interference with this final step
of lid assembly would be an attractive target for such therapies.
However, this will require more detailed knowledge of lid bio-
genesis and a better understanding of how Rpni12 regulates
RP assembly. Thus, a central challenge in studying proteasome
biogenesis, as well as that of many other multisubunit com-
plexes, is to understand precisely how hierarchical assembly
events are enforced in vivo.

Single-particle electron microscopy (EM) and mass spectrom-
etry (MS) are powerful tools to investigate large macromolecular
structures. Although these approaches have been used exten-
sively with the fully assembled 26S proteasome (Lander et al.,
2012; Sharon et al., 2006, 2007; Unverdorben et al., 2014; Witt
et al., 2006), little information is available on the structures of
proteasome assembly intermediates (Kock et al., 2015). Appli-
cation of structural methods to assembly intermediates could
provide substantial insight into the molecular mechanisms guid-
ing proteasome biogenesis.

Quantitative cross-linking/MS (QCLMS) has recently emerged
as a means to provide insights into dynamic aspects of protein
structures (Fischer et al., 2013). An early application revealed
structural changes within a multi-protein complex upon phosphor-
ylation (Schmidt et al., 2013). Here, using a newly established
workflow, we apply QCLMS to both the LP2 assembly intermedi-
ate and full lid; this has revealed multiple conformational changes,
including the repositioning of the Rpn8-Rpn11 deubiquitinating
enzyme (DUB) module. In addition, by comparing EM-derived mo-
lecular models of LP2, the free lid and the lid docked within the 26S
proteasome, we show that incorporation of Rpn12 results in large-
scale conformational remodeling of the nascent lid from a
compact “closed” state in LP2, which is autoinhibited for base
binding, to an open, more flexible state that can pair with the
base. Remarkably, the highly conserved C-terminal o helix of
Rpn12 is sufficient to promote conversion of LP2 to a lid-like
conformation, enabling assembly of LP2 into the RP. These find-
ings rationalize previous biochemical and genetic data indicating
acritical role for Rpn12 in RP assembly, and provide novel insights
into chaperone-independent proteasome assembly. Coupling
small, local structural switches to large conformational changes
is reminiscent of certain steps in virus assembly. Such locally
induced conformational rearrangements are likely to be used in
the hierarchical assembly of other multisubunit complexes, such
as snRNPs, group Il chaperonins, and ribosomes.

RESULTS
Reconstitution of Proteasome RP Assembly from
Recombinant Constituents

Previously, we found that purified yeast LP2 assembled into
full proteasomes when added to a yeast extract containing
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wild-type Rpn12, but not one with an Rpn12 truncation lacking
C-terminal residues 212-274 (Figure S1) (Tomko and Hoch-
strasser, 2011). This could be due to a requirement for full-length
Rpn12 or from an inhibitory effect of the truncated Rpn12 pro-
tein. Assembly might also require other factors in the extracts
such as molecular chaperones. Thus, we sought a system of
reduced complexity to analyze RP assembly. Toward this end,
we established an in vitro RP assembly assay that consisted
exclusively of bacterially expressed recombinant proteins.

Interaction of recombinant LP2 and a recombinant base
precursor containing the Rpn14, Nas6, and Hsm3 assembly chap-
erones (hereafter called base) (Beckwith et al., 2013) was entirely
dependent on Rpn12 (Figure 1C). Notably, Rpn12 could be sup-
plied as part of the lid or added ectopically to the LP2 and base
mixture with comparable results. In the pseudoatomic structure
of the 26S proteasome determined by cryo-EM (PDB 4CR2),
Rpn12 Glu271 lies near the interface between the lid and base (Fig-
ure 1B). As previously observed in yeast cells (Tomko and Hoch-
strasser, 2011), mutation of this highly conserved residue to lysine
also impairs lid-base attachment in the in vitro system, but it does
not compromise the stability of Rpn12 within the lid (Figure 1D).
These findings support our previous observations that Rpn12
incorporation controls lid-base association in yeast and is regu-
lated at least in part by the C-terminal helix of Rpn12.

QCLMS Reveals Local LP2-Lid Structural Changes
Rpn12 occupies a peripheral position within the RP and provides
a very small fraction of the total interface between the lid
and base complexes. This suggests that Rpn12 may instead
promote lid-base joining primarily by inducing conformational
changes in the assembling lid. To help determine how Rpn12
mediates lid-base joining, we first utilized QCLMS (Fischer
etal., 2013) to identify protein cross-links that were unique or en-
riched in LP2 or lid, with the expectation that these differences
reflect differences between the solution state conformations of
these two particles. We purified each of the complexes from
yeast (Figures S2A and S2B) and subjected them to cross-linking
with non-deuterated or deuterated forms of the amine-reactive
cross-linker BS®, followed by protease digestion, 1:1 sample
mixing, and LC-MS/MS analysis (Figure 2A). We used conditions
identified in preliminary experiments that yielded only intra-
complex cross-links (Figures S2C and S2D). The cross-linking
experiments were done twice but with the non-deuterated and
deuterated BS® swapped between LP2 and lid samples; this
replicate analysis with label-swap controlled for any labeling
bias and ensured accurate quantitation, especially for cross-
links that are unique in either lid or LP2 (Figures S2E-S2G).

We identified and quantified 122 unique cross-links (Table S1).
Among them, 81 were quantified consistently in label-swap rep-
licas. Most of these 81 cross-links showed nearly equal preva-
lence in the lid and LP2 samples (i.e., were centered on log, = 0;
Figure 2B, i, and Figures S2E and S2F), which is consistent
with 1:1 sample mixing (Figure 2B). However, one cross-link
was unique to lid, and three were unique to LP2 (Figure 2B, ii).
In addition, 16 of the 77 cross-links observed for both lid and
LP2 were significantly enriched in either lid or LP2 (“Significance
A” test, Perseus version 1.4.1.2 [Cox and Mann, 2008]; p < 0.05).
Of these 16 cross-links, 15 changed more than 4-fold in at least
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one of the replicated analyses (Figure S2F). Importantly, none
of these cross-links directly involved Rpn12 or were in positions
expected to be sterically occluded by Rpn12 based on the pseu-
doatomic structure of the 26S proteasome, strongly suggesting
that these differences resulted from structural variance between
the two particles.

Examination of the cross-links enriched in either LP2 or the
lid suggested two major conformational differences between
the two particles. The first was the relative positioning of the
Rpn8-Rpn11 module (regions A1 [Rpn8 residues 299-309], A2
[Rpn11 residue 267], and B [Rpn7 residue 2], Figures 2C and
2D) within the complexes, and the second was the positioning
of the Sem1 N terminus, the N-terminal o-helical domain of
Rpn3, and the C-terminal a-helix of Rpn7 relative to one another
(regions C1 [Sem1 residues 2-26], C2 [Rpn7 residues 416-426],
and C3 [Rpn3 residues 299-389], Figure 2C). The latter three
subunits yielded a web of cross-links that was selectively en-
riched in LP2, suggesting that these regions were more closely
packed in LP2 (pink lines between regions C1, 2, and 3, Fig-
ure 2C). The enrichment of cross-links between the C-terminal
helix of Rpn7 and residues in the N-terminal extension of
Rpn3 (Figure S1) suggests that the helical bundle, or at least
the C-helix of Rpn7, may be compacted against the body of
Rpn3 and/or Rpn7 in LP2, and that it is repositioned upon incor-
poration of Rpn12. As Rpn12 forms an extensive interface with
Rpn3 and appears to make little to no contact with Rpn7 in the
26S proteasome structure (Matyskiela et al., 2013; Unverdorben
et al., 2014), it is likely that these changes are mediated through
Rpn3.

Regarding the Rpn8-Rpn11 module, cross-links between
Rpn8 and the C-terminal helix of Rpn9 (Figure S1) were enriched
or unique to LP2 (Figure 2C), and an LP2-specific cross-link be-
tween Rpn8 and the extreme N terminus of Rpn7 was observed
(red line between A1 and B, Figure 2C). In contrast, we observed
lid-enriched cross-linking between the C terminus of Rpn8
and the C-terminal helix of Rpn7, the N-terminal region of
Rpn3, and the N-terminal region of Sem1 (regions C1 and C3,
light blue lines, Figure 2C). Further, a cross-link between the
C-terminal helix of Rpn11 and the N-terminal region of Sem1
was detected only in the lid (regions A2 and C1, dark blue line,
Figure 2C). A series of common cross-links between Rpn8 and
Rpn11 suggests that the module itself is unlikely to vary substan-
tially in structure between LP2 and lid.

Taken together, the enrichment of cross-linking in different
regions of the lid and the loss or depletion of cross-linking to
Rpn9 suggest that the Rpn8-Rpn11 module undergoes sub-
stantial movement upon incorporation of Rpn12 (Figure 2D).
We suggest that a rigid-body rotation of the Rpn8-Rpn11 dimer
(modeled in Figure 2E) may occur upon incorporation of Rpn12
that would account for the observed changes in cross-linking.

The N Terminus of Rpn5 Is Highly Flexible in the
Undocked Lid

Currently, the only structural information on the isolated lid is
from negative-stain EM (Lander et al., 2012). However, this struc-
ture is not at sufficiently high resolution to aid in visualizing our
cross-linking data. To provide insight into the solution confor-
mation of the free lid, we mapped our cross-link network for
the isolated lid onto the lid within the cryo-EM structure of the
26S proteasome (Unverdorben et al., 2014). 61 cross-links could
be mapped onto this structure (Figure 3, Data S1, and Table S1).
Surprisingly, 26 of the 61 cross-links spanned distances greater
than the calculated maximum distance between a-carbons in
BS3-cross-linked residues (based on spacer length of BS® and
side-chain lengths of cross-linked residues; Supplemental
Experimental Procedures) (Figure 3B), suggesting that the free
lid is much more flexible than the docked lid. Two clusters of
over-length inter-subunit cross-links were apparent. The first
consisted of five cross-links between Rpn9 and either Rpn8 or
Rpn11, indicating that the Rpn8/Rpn11 dimer is positioned
closer to Rpn9 in the free lid than in the mature proteasome.
Importantly, together with the results of our LP2-lid comparison,
this further supports a model in which Rpn8/Rpn11 undergoes
substantial movements during RP assembly.

The second cluster involved 19 cross-links between the
N-terminal extension of Rpn5 and either itself or other lid sub-
units, with several of these cross-linked residues being over
100 A apart in the 26S proteasome. Further, cross-links involving
Rpn5-K108 were observed with residues from four subunits
(Rpn3, Rpn6, Rpn8, and Rpn11) that are, in some cases, very
far from one another in the proteasome-docked lid, suggesting
substantial mobility of this domain of Rpn5 in the free lid. This
was further supported by the observation that over-length
intra-subunit cross-links were observed only within Rpn5 and
not within any other subunit. Taken together, these data strongly
suggest that the lid Rpn5 N-terminal domain is highly flexible

Figure 2. Quantitative Cross-linking/Mass Spectrometry Reveals Local Differences in LP2 and Lid Structures

(A) Overview of quantitative cross-linking/MS analysis of LP2 and lid complexes.

(B) i: fold changes [log,(LP2/lid)] of 81 quantified cross-links (consistently quantified in both forward- and reverse-labeled experiments) were plotted against
their signal intensities. These quantified cross-links were divided into five subgroups and colored accordingly—three are unique to the LP2 sample (red), one is
unique to the lid sample (blue); among 77 cross-links observed in both samples, 61 common cross-links showed no significant difference in yields in the LP2 and
the lid samples (gray), while seven cross-links are significantly upregulated in the LP2 sample (p < 0.05, magenta) and nine in the lid sample (p < 0.05, cyan). ii:
observed MS signals of supporting cross-linked peptides of “lid unique” cross-link 267°"N'1-205EM1 (lft), “common” cross-link 404°°N°-150°PNT (middle), and
“LP2 unique” cross-link 2°PN7-3007PN8 (right).

(C) Cross-linking network of lid/LP2 subunits. Proteins are shown as bars, and cross-links are shown as lines that are colored according to their quantified
subgroups (described in B). LP2-unique, LP2-enriched, lid-unique, and lid-enriched cross-links, which suggest conformational differences between LP2 and lid,
mainly involve three regions marked as A, B and C.

(D) Relative cross-link enrichments suggest a repositioning of the Rpn8-Rpn11 heterodimer within the lid structure (derived from PDB 4CR2) upon Rpn12
incorporation that may be important for subsequent RP assembly steps. Regions A, B, and C are highlighted accordingly. Regions C1 and B that are not present
in 4CR2 are located based on their cross-linking partners in the model.

(E) A rigid-body rotation of the Rpn8-Rpn11 upon Rpn12 incorporation may account for the observed change in the Rpn8-Rpn11 cross-link network.
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Figure 3. Mapping Lid Cross-links onto the Lid in the 26S Pseudoatomic Model Reveals Subunit Flexibility in the Undocked Lid

(A) Lid cross-links (61) detected in our QCLMS analysis are depicted on the 26S proteasome pseudoatomic structure (PDB 4CR2). Cross-links are displayed as
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(B) The differences in length between the 61 cross-links mapped onto PDB 4CR2 in (A) and the theoretical cross-linking limit (e.g., 27 Afor lysine-lysine cross-
links, Supplemental Experimental Procedures) are shown. Distances are between the Ca atoms of cross-linked residues.

See also Figure S2.

and free to undergo substantial movement in solution (Lander
et al., 2012). Incorporation of the lid into the 26S proteasome
likely stabilizes Rpn5 in the extended conformation via interac-
tion of its N terminus with the base and CP and is accompanied
by a repositioning of the Rpn8/Rpn11 module away from Rpn9.

EM Structure of LP2 Reveals a Compact Intermediate

We next investigated the architecture of LP2 by negative-stain
EM and single-particle analysis for comparison to the negative
stain EM structure of the isolated lid (EMD-1993) (Lander et al.,
2012). Raw micrographs of LP2 showed monodisperse particles
with dimensions =200 A x 250 A (Figure S3A). Reference-free
two-dimensional (2D) alignment and classification yielded class
averages with strong similarities to the previously determined
structure of the isolated lid (Figure 4A). As expected, LP2 lacked
density for Rpn12, but surprisingly, also lacked the prominent
N-terminal extension of Rpn6 that was previously observed in
the isolated lid (Lander et al., 2012). We saw this absence of
density for the N-terminal portion of Rpn6 both for LP2 purified

from yeast, as well as recombinant LP2 produced in E. coli
(Figures S3G and S3H).

To address whether the observed LP2-lid differences were a
result of sample preparation differences, we repeated the EM
analysis with the full lid. 2D class averages of lid purified from
yeast showed a density for the N-terminal extension of Rpn6
(Figure 4A). Additionally, a three-dimensional (3D) reconstruction
of lid obtained with our complexes was nearly identical to that
determined by Lander et al. (2012) (Figures 4B, S3C, and S3D),
indicating that sample preparation was not responsible for the
structural differences between LP2 and lid. Using iterative
back-projection refinement of LP2 particles with the structure
of lid low-pass filtered to 60 Aasa starting model, we obtained
a 3D reconstruction of LP2 at 16 A resolution, showing the clear
domain architecture of the complex (Figures 4B and S3E-S3G).

The quality of our LP2 structure allowed facile automated
segmentation based on visual inspection and comparison to
the previously determined lid density (Figure 4B). In agreement
with our 2D analysis and protein cross-linking, the overall subunit
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Lid

architectures of LP2 and lid were very similar. In LP2, the Rpn6
N-terminal helical domain (Rpn6-N) is folded into a cavity formed
by Rpn3, Rpn7, Rpn8, and Rpn11. Using 3D difference mapping
between our LP2 structure and the lid structure from Lander et al.
(2012), we unambiguously assigned the most prominent
changes in density in the lid to Rpn12 and Rpn6-N (Figure 4C).
This observation prompted us to reexamine our QCLMS data.
Although the Rpn6-N conformation seen by EM in LP2 was not
overtly reflected in LP2-specific cross-linking of this domain (Fig-
ure 3), an LP2-unique cross-link was in fact observed between
Rpn6-Lys195 and Rpn11-Lys12 (Table S1). This particular amino
acid of Rpn11 is not modeled in the cryo-EM structure (PDB:
4CR2), but extrapolation from the most proximal modeled
Rpn11 residue (Thr23) indicates that the cross-link between
Rpn6 and Rpn11 must be well over the maximal predicted cutoff.
In further support of the compact conformation of LP2 observed
by EM, two overlength cross-links were observed between
Rpn6-N and Rpn8 (Rpn6-Lys300 to Rpn8-Thr224 and Rpn6-
Ser310 to Rpn8-Lys198) for both the lid and LP2 (Figure 3A
and Table S1). Formation of these cross-links in the lid, as well
as LP2, suggests that the lid may dynamically sample more
compact conformations.

LP2 Is Sterically Incompatible with Positioning in the
Mature 26S Proteasome

In the 26S proteasome, the Rpn6 N-terminal helical domain is
extended and makes contact with subunits of the RP base and
CP (Lander et al., 2012; Pathare et al., 2012). Since this domain
is folded into the core of LP2, it raised the possibility that
adoption of this conformation produced a steric conflict with
the base that would prevent incorporation of LP2 into the
assembling RP prior to Rpn12 assimilation. By docking the
previously determined EM structure of the isolated lid onto
the lid subunits of the pseudoatomic model of the 26S and
then overlaying our LP2 structure onto this structure, we were
able to examine whether LP2 could incorporate into the protea-
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Figure 4. Electron Microscopy of LP2 and
Lid Purified from Yeast Reveals Closed and
Open Configurations, Respectively

(A) The N-terminal domain of Rpn6 adopts an
extended conformation in lid, but not in LP2.
Representative 2D class averages of LP2 or lid
indicating the positions of Rpn12 and the Rpn6 N
terminus are shown. The width of the boxes is
~430 A.

(B) 3D reconstructions of the lid (EMD-1993) and
LP2 (this study) are shown.

(C) Difference-density map of lid and LP2 indicates
that the two major regions of variant density are
those for Rpn12 and the N-terminal domain of
Rpn6.

See also Figure S3.

Lid - LP2
Diff. Map

some without steric conflict (Figure 5A). In
the EM structure of the 26S proteasome,
Rpn3 and Rpn9 curve inward toward the
center of the RP and make direct contacts
with Rpn2 and Rpn10, respectively. In
the LP2 model, Rpn3 and Rpn9 are not curved inward, which
could contribute to the apparent poor affinity of LP2 for
the base. Further, in LP2, Rpn6-N cannot make the contacts
with the core particle and base ATPase ring that are observed
for this domain in the mature 26S proteasome. Rather, the
model displayed clear steric clashes between the LP2 Rpn6-N
conformation and segments within the base ATPase subunits
Rpt3, Rpt4, and Rpt6 (Figure 5A, inset). This strongly implies
that the closed conformation observed for LP2 is an autoinhi-
bited conformation that prevents lid-base association until
Rpn12 incorporation. This model would rationalize the behavior
of LP2 in vitro (Figure 1) and in yeast (Tomko and Hochstrasser,
2011).

Addition of Purified Rpn12 to LP2 Is Sufficient to Drive
Lid Maturation

If Rpn12 relieves an autoinhibited conformation of LP2 to
promote lid-base joining, then adding purified Rpn12 to LP2
should promote structural changes in LP2 that result in a lid-
like structure. We treated purified recombinant LP2 with
an equimolar concentration of recombinant Rpn12 and exam-
ined the structure of the resultant complex by EM. Consistent
with a role for Rpn12 in maturation of the assembling lid,
2D class averages indicated that Rpn12 addition caused exten-
sion of Rpn6-N to a conformation similar to that observed in
the purified full lid (Figure 5B). Thus, incorporation of Rpn12
drives a large-scale structural rearrangement of the assembling
lid that relieves the autoinhibitory conformation of the Rpn6 N
terminus.

Using two complementary approaches, we next addressed
whether relieving the steric conflict between the N-terminal
domain of Rpn6 and the base was sufficient to drive RP assem-
bly in the absence of Rpn12. In the first, we appended the bulky
GFP protein to the N terminus of Rpn6, which should physically
clash with surrounding subunits in the closed conformation and
potentially induce the extended conformation for Rpn6-N. In the



Figure 5. Rpn12 Addition Relieves an Autoinhibitory Conformation
of the Rpn6 N Terminus

(A) The LP2 3D reconstruction (transparent surface) was modeled onto the
pseudoatomic model of the 26S proteasome (PDB 4CR2) using the winged-
helix horseshoe as a guide point, revealing steric clash (red surface) between
the N-terminal domain of Rpn6 in LP2 (medium blue surface) and Rpt3, 4, and
6 (dark blue ribbons) of the base (inset). The corresponding position of the
N-terminal domain of Rpn6 in the lid is also indicated (light blue ribbons). Rpn3
(yellow) and Rpn9 (magenta) are highlighted to show differences between
LP2 and the docked lid.

(B) Addition of recombinant Rpn12 to purified recombinant LP2 triggers
extension of the Rpn6 N terminus. The class averages are labeled as in Figure
4A. The width of the boxes is ~430 A.

second approach, we engineered N-terminally truncated forms
of Rpn6 that were anticipated to lack the putative autoinhibitory
domain (Figure 6A). Both the GFP-Rpn6 fusion and N-terminal

Rpn6 truncation proteins assembled efficiently into LP2 when
coexpressed with the other LP2 subunits in E. coli (Figures
S4A and S4B), suggesting that Rpn6-N is dispensable for
LP2 assembly. As predicted, appending GFP to the N terminus
of Rpn6 resulted in a conformation of Rpn6-N within LP2 that
appeared similar to its extended conformation in the full lid
(Figures 6B and S4C). Importantly, each of the mutant forms of
LP2 assembled into the RP when recombinant Rpn12 was pro-
vided (Figure S4D), indicating that they were functional for RP
assembly. In contrast, neither GFP-LP2 (Figure 6C) nor LP2
harboring truncations of Rpn6 (Figure 6D) assembled into an
RP-like structure in the absence of Rpn12. Therefore, reposition-
ing or removal of Rpn6-N is insufficient to promote LP2-base
joining. This indicates that Rpn12 binding to LP2 triggers addi-
tional changes in the lid precursor that are necessary for RP
formation.

Rpn12 C-Terminal Helix Engagement of the Lid Helical
Bundle Licenses RP Assembly

The C terminus of Rpn12 forms an o helix that inserts into a
pronounced groove within a helical bundle formed by C-terminal
helices from all the other large lid subunits (Estrin et al., 2013).
This helix of Rpn12 is important both for the completion of lid
assembly and engagement of the lid with the base (Tomko and
Hochstrasser, 2011). The complex interface between the helical
bundle and the Rpn12 helix would in principle allow Rpn12 to
sense and transmit signals through multiple lid subunits. We
therefore asked whether provision of the Rpn12 C-terminal helix
alone was sufficient to drive lid-base association.

A fluorescently labeled peptide composed of Rpn12 residues
254-272 (N12pep) bound to purified LP2 in vitro and could be
competed off with excess recombinant Rpn12, indicating that
the peptide bound LP2 in a manner similar to the full-length
protein (Figure 7A). Indeed, addition of N12pep to purified LP2
triggered conformational extension of the Rpn6 N-terminal
domain (Figure 7B), as had been observed with full-length re-
combinant Rpn12 (Figure 5B). Most importantly, N12pep pro-
moted LP2-base joining when LP2 and N12pep were supplied
in molar excess to the base, as revealed by a migration shift of
the base on native gel blots (Figure 7C). Assembly into the RP
was not as efficient as it was with recombinant Rpn12, suggest-
ing that other parts of Rpn12 promote assembly, possibly by sta-
bilizing the Rpn12 C-terminal helix. RP formation was specific to
N12pep, as identical concentrations of two unrelated peptides
had no effect on LP2-base joining (Figure 7D). In summary, our
data indicate that engagement of the nascent lid helical bundle
by the Rpn12 C-terminal helix is the key event triggering con-
formational remodeling of the assembling lid and subsequent
lid-base joining.

DISCUSSION

Hierarchical assembly has emerged as a theme in the regula-
tion of proteasome biogenesis (Tomko and Hochstrasser,
2013). In yeast and mammals, most evidence suggests that
the proteasome lid assembles completely before making
stable contact with the base complex or its subunits (Fukunaga
et al., 2010; Thompson et al., 2009; Tomko and Hochstrasser,
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Figure 6. Relief of Steric Conflict Imposed
by the Rpn6 N Terminus Is Not Sufficient to
Drive Binding of LP2 to the Base

(A) The positions of truncations to Rpn6 are shown
on the pseudoatomic structure of the lid from PDB
4CR2. The base and core particle subunits are

LP2

Lid
EGFP-LP2
Rpn10
Base

B LP2 +

omitted for clarity. The positions of Rpn6 amino
acid 173 and Rpn6 amino acid 212 (the first
endogenous residues present in the A172 and
A211-rpn6 truncation mutants, respectively) are
shown as yellow spheres.

(B) Fusion of GFP to the N terminus of Rpn6 within
LP2 causes the N terminus to assume a confor-
mation similar to that observed for the lid. The
width of the box is ~430 A.

—RP

_Base
—LP2/Lid

Coomassie Stain

(C) Addition of LP2 containing a GFP-Rpn6 fusion
to the base precursor is not sufficient to trigger
LP2-base association. Untagged LP2, LP2 with
N-terminally GFP-tagged Rpn6 (GFP-LP2), or lid
(1 uM each) were added to 1 uM base and 10 uM
Rpn10 before analysis by native PAGE. Asterisk,
poorly resolved or potentially aggregated protein(s).
(D) Addition of LP2 containing truncated forms of
Rpn6 is not sufficient to trigger LP2-base associ-
ation. Untagged LP2, LP2, lid, or the indicated
forms of Rpn6 truncation mutant LP2 (1 uM each)

were added to 1 uM base and 10 uM Rpn10 before
analysis by native PAGE and immunoblotting.
Asterisk, cross-reactive band.

See also Figure S4.
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2011). The mechanism underlying this observation had been
unknown. Our combined QCLMS, EM, and biochemical recon-
stitution studies now show that both large-scale conformational
rearrangements and local repositioning of lid subunits are trig-
gered by Rpni12 binding. These rearrangements underlie the
coupling between completion of lid assembly and licensing of
the lid for attachment to the base. Our findings rationalize pre-
vious genetic data implicating the Rpn12 C-terminal helix in RP
formation and reveal how Rpn12 can govern lid-base joining
despite making minimal contacts with the base in the mature
proteasome.

Local and Global Conformational Changes during

Lid Assembly

Mapping the quantified cross-links onto the 26S proteasome
pseudoatomic structure reveals that the Rpn8/Rpn11 module
is repositioned as assembly progresses from LP2 to lid and
finally to the full proteasome (Figures 2D and 3). Recently, it
has been shown that the isolated recombinant Rpn8/Rpn11
heterodimer has significant deubiquitinating (DUB) activity
(Worden et al., 2014). Intriguingly, we did not detect DUB activ-
ity in LP2 (Figure S4E and data not shown) or in the full lid (data
not shown). It is unclear whether the separate Rpn8-Rpni1
module occurs physiologically either as a lid assembly interme-
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proteasomal functions (Hofmann et al.,
2009; Rinaldi et al., 2004, 2008), but we
speculate that Rpn11 DUB may be held
inactive in the context of LP2 and lid.

The repositioning suggested by our QCLMS data may be
required for Rpn11 activation during incorporation into the pro-
teasome holoenzyme, perhaps by relief of inhibitory contacts
with other lid subunits. It is unlikely that Rpn6 would serve this
autoinhibitory role given that Rpn6-N is extended away from
the Rpn8/Rpn11 module in the EM structure of the lid. However,
the high flexibility of Rpn5 (Figure 3) makes it an attractive candi-
date for this putative function. Notably, the Rpn5 paralog of
the lid-related COP9/signalosome (CSN), CSN4, engages and
inhibits the activity of the CSN6-CSN5 module (paralogous to
Rpn8/Rpn11) in the fully assembled CSN (Lingaraju et al.,
2014). This inhibition is released upon substrate engagement
to stimulate the deneddylase activity of CSN5.

The lid is generally thought to interact stably with the base
(and perhaps the CP), and Rpn11 DUB activity is regulated in
part through ATP binding and/or hydrolysis by the base (Liu
etal., 2006; Matyskiela et al., 2013; Verma et al., 2002). However,
Rpn8 and Rpn11 make very little contact with base subunits
in the proteasome holoenzyme. Our observation that Rpn12
binding to the lid at a remote location can reposition the Rpn8-
Rpn11 module suggests the possibility that ATP binding or
hydrolysis by the base might also allosterically regulate this
module through movements of the lid rather than direct contacts
with the ATPase heterohexamer itself.
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The Rpn12 C-Terminal Helix as an Allosteric Trigger
Our EM analyses and reconstitution experiments demonstrate
that the Rpn12 C-terminal helix initiates a global remodeling of
the lid structure from an autoinhibited conformation to one that
can join to the base. Importantly, this single helix is sufficient
to promote both the remodeling of LP2, as well as interaction be-
tween LP2 and base. Although the peptide was not as potent as
full-length Rpn12 in the base-joining assay, this could simply
reflect a lower affinity of the isolated peptide for LP2 compared
to Rpn12. Other elements of Rpn12 may enhance binding of
the C-terminal helix to LP2 via Rpn12 interactions with Rpn3.
Additional contacts between Rpn12 and LP2 (and base) may
also be necessary to promote an optimal conformation of the
lid for binding to the base.

We found that Rpn6-N undergoes a striking movement from
a position pressed against other subunits in LP2 to an extended
conformation in the lid. Computational docking of the LP2
model onto the 26S proteasome indicates that steric clash
would occur between the base ATPase ring and Rpn6-N. As
neither displacement nor removal of the putative autoinhibitory
domain alone was sufficient to trigger stable interaction be-
tween LP2 and the base, additional changes must also be
needed. Other large steric clashes were not readily apparent

Figure 7. Engagement of the Lid Helical
Bundle by the Rpn12 C-Terminal Helix Li-
censes the Lid for RP Assembly

(A) A fluorescently labeled peptide corresponding
to amino acids 254-272 from yeast Rpni2
(N12pep) binds to LP2 similarly to full-length
Rpn12. The average difference in fluorescence
anisotropies between the free fluorescein-labeled
N12pep and N12pep after addition of the indicated
proteins are shown. Error bars, SEM.

(B) Addition of N12pep triggers extension of the
Rpn6 N terminus from the body of LP2. N12pep
(10 pM) was added to purified, untagged LP2,
followed by analysis by negative-stain EM. The
width of the box is ~430 A.

(C) N12pep triggers association of LP2 and base in
the absence of Rpn12. EGFP-LP2 (1 or 10 uM) was
incubated with 1 uM base, 10 uM Rpn10, and the
indicated concentration of N12pep before native
PAGE and immunoblotting. RP*, an RP-like spe-
cies devoid of Rpn12 but reactive with both lid
(not shown) and base antibodies.

(D) N12pep, but not V5 or 3xFLAG control
peptides, trigger LP2-BaseP association. LP2
harboring an N-terminal EGFP tag on Rpn6, base
harboring an N-terminal MBP tag on Rpt1, and
Rpn10 were incubated as in (C) with 100 uM of the
indicated peptides, followed by analysis as in (C).
An arrowhead marks RP*.

(E) Model for Rpn12-dependent licensing of the lid
for lid-base joining. LP2 assumes a closed
conformation with the N-terminal domain of Rpn6é
folded inward, causing steric clash with the base.
During incorporation of Rpn12 into LP2, engage-
ment of the C-terminal helical bundle triggers
extension of the Rpn6 N terminus, as well as
additional, as-yet-unknown events (not depicted)
that promote a conformation of the lid that is
competent for binding the base.

in our modeling of LP2 onto the 26S proteasome, but this could
simply reflect differences in the conformation of the assembly
chaperone-bound base precursor used in our study and the
chaperone-free base in the context of the 26S holoenzyme
observed in previous EM studies. No structural information
currently exists on the chaperone-bound base precursor. The
combination of QCLMS and EM approaches used here could
be valuable in exploring the structure of the base precursor
relative to the structure of the base in the context of the mature
proteasome; such differences might also be important for regu-
lating lid-base joining.

In this study, QCLMS was applied for the first time to study
conformational changes involved in macromolecular assembly.
Compared to a previous use of isotope-labeled cross-linkers
for quantification (Schmidt et al., 2013), our workflow advanced
a number of critical aspects: replicate analysis with label swap
ensured accurate quantitation; summarizing quantitation into
residue pairs reduced the impact of unrelated influences that
would be felt at the peptide level (such as additional modifi-
cations or digestion efficiency); and use of well-established
quantitative proteomics software minimized errors in manual
analysis (Schmidt et al., 2013) and significantly reduced analysis
time. These advances in turn enabled the depth and magnitude
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needed for the analysis of large protein assemblies, as presented
here.

Recently, a 5-subunit subcomplex of the lid (without Rpn12)
was shown to bind to a chaperone-free base-CP complex
in vitro (Yu et al., 2015). It is not yet clear whether this species
points to an alternative route to RP formation, as it has not
been reported to form naturally in vivo and it is unknown if it
is competent for assembly into full 26S proteasomes. However,
alternative routes to RP formation are not ruled out by our data.
For example, the full lid bound to a subset of base subunits was
isolated from bovine erythrocytes and shown to be capable of
assembly into full RPs (Thompson et al., 2009). Alternatively,
RPs or 26S proteasomes might be partially disassembled
under some conditions (Fane and Prevelige, 2003; Nanduri
et al., 2015).

As engagement of the LP2 helical bundle by the Rpni2
C-terminal helix was sufficient to promote interaction between
LP2 and base independent of the rest of Rpn12, an allosteric
signal is likely transmitted through the helical bundle. Rpn12
binding may reposition this bundle in a manner conducive
for base binding. Further structural studies will be necessary
to identify the specific subunit reconfigurations that drive
lid-base joining. Another important challenge will be to deter-
mine the allosteric path of signal transduction from the Rpn12
C-terminal helix to the rest of the lid during conformational
switching.

The Rpn12-Induced Conformational Rearrangement Is
Reminiscent of Viral Maturation

Several parallels can be drawn between proteasome biogenesis
and the assembly of viruses. As with the proteasomal CP and RP
base, assembly of viral capsids frequently depends on exoge-
nous chaperone proteins to form functional structures with the
proper subunit arrangements (Fane and Prevelige, 2003).
Further, in analogy to lid assembly and lid-base joining, incorpo-
ration of major viral subcomplexes also follows hierarchical
assembly orders. For example, the head, base, and tail fibers
of the T4 bacteriophage each assemble independently prior to
joining together (Aksyuk and Rossmann, 2011). Finally, the cap-
sids of many class | viruses undergo dramatic conformational
rearrangements upon completion of distinct assembly events
(Mateu, 2013). These rearrangements are coupled to the assem-
bly state either via proteolytic cleavage reactions or by allosteric
contacts analogous to those observed for LP2 and Rpn12. They
in turn license the capsid for subsequent assembly steps, such
as viral DNA packaging or attachment to the tail. Thus, while
the biochemical mechanisms differ, these functional themes
are shared between highly disparate macromolecular com-
plexes and likely contribute to the faithful biogenesis of other
multisubunit assemblies.

Our multipronged approach to identifying structural differ-
ences between assembly intermediates should prove valuable
in future efforts to understand conformational switches and their
role in proteasome assembly. The ability to reconstitute the
RP in vitro from fully recombinant subunits will greatly facilitate
biochemical and biophysical analyses of these processes. This
approach should be readily extendable to studies of the assem-
bly and action of other large multisubunit complexes.
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EXPERIMENTAL PROCEDURES

Plasmids

Plasmids used in this study are listed in Table S2. Generation of multigene
operons for bacterial expression was done as described (Tomko and Hoch-
strasser, 2014). All mutations were first introduced into host plasmids contain-
ing individual subunit expression cassettes, confirmed by DNA sequencing,
and then transferred by subcloning into the appropriate operons.

Recombinant Protein Expression and Purification

All purified proteins were derived from the S. cerevisiae coding sequences
and were purified either from S. cerevisiae or from E. coli as indicated in the
text. All proteins and complexes were affinity purified using conventional tech-
niques, followed by gel filtration. See also Supplemental Experimental
Procedures.

Fluorescence Anisotropy Measurements

A peptide with residues 254-272 of Rpn12 followed by a 5,6-carboxyfluores-
cein-labeled lysine (NH,-DQKTNIEEKAMDYAISIENIK*-CO,H, herein referred
to as N12pep) was synthesized by Elim Biopharmaceuticals. Fluorescent
peptide (1 pM) was incubated in Lid Buffer alone, with 1 uM LP2, 5 uM
Rpn12, or both at 25°C for 20 min. Fluorescence polarization was then
measured on a two-channel fluorometer (PTI) with linear polarizers with exci-
tation at 485 nm. The change in anisotropy compared to peptide alone was
calculated using the average of the anisotropy values over the emission range
513-528 nm.

Assembly Assays

LP2 and its derivatives, lid, recombinant base precursor, and recombinant
Rpn12 were diluted together to 1 uM each along with 10 uM Rpn10 in 26S
buffer (50 mM TriseHCI [pH 7.5], 5 mM MgCl,, 10% glycerol, 1 mM ATP) unless
otherwise noted. After incubation at 30°C for 20 min, aliquots of each reaction
were separated by native polyacrylamide gel electrophoresis (native PAGE)
at 100 V at 4°C as described previously (Tomko and Hochstrasser, 2014).
Native PAGE-separated proteins were transferred to PVDF membranes and
subjected to immunoblot analysis.

Negative-Stain Electron Microscopy

LP2 and Lid complexes were diluted to ~50 nM in Buffer A (50 mM TriseHCI
[pH 7.5], 150 mM NaCl, 5 mM MgCl,, 10% glycerol) immediately prior to
applying the sample to glow-discharged 400 mesh continuous carbon grids.
After staining with 2% (w/v) uranyl acetate, the residual stain was blotted off,
and the samples were air-dried in a fume hood. Data were acquired using a
Tecnai F20 Twin transmission electron microscope at 120 keV at a nominal
magnification of 80,000 (1.45 Aatthe specimen level) using low-dose expo-
sures (~20 e’A’Z) with a randomly set defocus ranging from —0.5to —1.3 um.
Atotal of 150-600 images of each LP2/lid complex sample were automatically
recorded on a Gatan 4k x 4k CCD camera using the MSI-Raster application
within the automated macromolecular microscopy software LEGINON
(Suloway et al., 2005). Specifically, 600, 510, 150, 150, and 300 micrographs
were acquired of LP2, Lid, LP2 supplemented with purified Rpn12, LP2 with
EGFP-Rpn6 complexes, and LP2 with peptide, respectively. See also Supple-
mental Experimental Procedures.

Cross-linking and Sample Preparation for Quantitative
Cross-linking/Mass Spectrometry

LP2 or lid (100 pg) purified from yeast in Buffer HA (50 mM HEPESeNaOH,
150 mM NaCl, 5 mM MgCl,, 10% glycerol) were each cross-linked with
bis[sulfosuccinimidyl] suberate-d0 (BSs—dO) and its deuterated form
bis[sulfosuccinimidyl] 2,2,7,7-suberate-d4 (BS®-d4) (Thermo Fisher) at 1:200
protein to cross-linker. The reaction was incubated at 30°C for 1 hr and
quenched with 2 M glycine (pH 7.0) for 30 min at room temperature. Mono-
meric cross-linked lid and LP2 were isolated via SDS-PAGE and in-gel
digested using trypsin (Chen et al., 2010). After digestion, cross-linked lid
and LP2 samples were mixed in 1:1 molar ratio, yielding two samples for
quantitative analysis: lid+BS®-d0/LP2+BS®-d4 and lid+BS°®-d4/LP2+BS®-d0.
Peptides were fractionated by strong cation exchange chromatography and



desalted using C18-StageTips for LC-MS/MS (Chen et al., 2010). See also
Supplemental Experimental Procedures.

ACCESSION NUMBERS

The accession number for the LP2 EM density map reported in this paper is
EMD: 3136.
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four figures, two tables, and one data file and can be found with this article
online at http://dx.doi.org/10.1016/j.cell.2015.09.022.
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Figure S1. Domain Architecture of Proteasome Lid Subunits, Related to Figure 1

The domain structures of PCl and MPN lid subunits are shown. The domains of the six PCl subunits are colored as follows: pink, N-terminal domain; gray, winged
helix domain; green, linker region; blue, C-terminal helix contributing to the lid helical bundle. The domains of the MPN domain-containing subunits, Rpn8 and
Rpn11, are colored as the PCI subunits, except the MPN domain is shown in red. The number following each bar diagram indicates the total number of amino
acids in the subunit, and the numbers at the domain boundaries mark the predicted first amino acid in each domain. Domain boundaries were inferred based on
integrated analyses of the subunits’ predicted secondary structures using PSIPred, comparisons to protein domain databases such as SMART (Simple Modular
Architecture Research Tool), and the modeled tertiary structures in the cryo-EM structure of the proteasome (PDB 4CR2).
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Figure S2. Validation of Quantitative Cross-linking-Mass Spectrometry Strategy, Related to Figure 2

(A and B) Purifications of LP2 (A) and lid (B) from yeast are shown.

(C and D) Titration of BS3 cross-linker. LP2 was treated with increasing molar ratios of BS3 to LP2 for 1 hr at 30°C, followed by quenching of unreacted BS3 with
2 M glycine, pH 7.4. Proteins were then analyzed by SDS-PAGE (C) or native PAGE-immunobilotting (D). Essentially identical results were obtained for lid (not
shown). In (D), loss of reactivity to the anti-FLAG antibody likely results from modification of lysine(s) in the epitope DYKDDDDK by BS;. A similar effect is observed
in the Rpn8 blot at the highest ratios of cross-linker to LP2. The increased mobility of LP2 in the native gel upon reaction with BS; is likely due to the loss of
positively charged lysine side chains that would retard the protein complex in the electric field, as well as a potentially more compact conformation enforced by
cross-linking. Note that the previously observed native PAGE-induced dimer of LP2 (asterisk) is not enriched with the cross-linker molar ratios used herein,
suggesting that the vast majority of LP2 cross-links are intramolecular.

(E) Fold changes [Log2(LP2/lid)] of 122 quantified cross-links were plotted against their signal intensities. In total, 81 cross-links were quantified in both forward
and reverse-labeled experiment (solid dots) whereas 41 cross-links were only quantified in one of two experiments (hollow dots). These quantified cross-links
have been divided into 5 subgroups and colored accordingly: four are unique to the LP2 sample (red); one is unique to the lid sample (blue); among 117 cross-links
that were observed in both LP2 and lid, 98 showed no significant difference on yields in both conformations (gray), whereas nine cross-links were significantly
upregulated in the LP2 sample (p < 0.05, magenta), and ten were significantly upregulated in the lid sample (p < 0.05, cyan).

(F) Reproducibility of QCLMS analysis. For 77 cross-links that have been quantified in both forward and reverse-labeled experiments (not including LP2-unique
and lid-unique cross-links), their fold change ([log2(LP2/lid)] in the forward-labeled experiment are plotted against their counterpart in the reverse-labeled
experiment. Cross-links are colored according to their quantitation subgroups as defined in (E).

(G) Cross-linking network of lid/LP2 subunits. Proteins are shown in bars. Cross-links that were quantified in both forward and reverse-labeled experiments are
shown as solid lines; while cross-links that were only quantified in one of two experiments are shown as a dashed line. All cross-links are colored according to their

quantitation subgroups as defined in (E).

S2 Cell 163, 432-444, October 8, 2015 ©2015 The Authors



LP2 C

B MBP-LP2 (Cleaved)
| - | - p
250 — (
150 —
100 — )
75 —| -
50 — —— —— —
] /
[a—— ﬂ- w
37 — — - ——' d
—— — — -/
25 —
20 —| Lid (this study) Lid (EMD-1993)
& x|
Coomassie Stain
E F Euler angle distribution

08
06
6]
B mmmmmmmmmmmmmm e A\ FSC 0.5=16A
w 1
04 !
:
1
02 i
:
:
:
:
0 L \er
56 28 14 7
Resolution (1/A)
G H

Class Avg. Reproj. Class Avg. Reproj Class Avg. Reproj.

Figure S3. Supporting Data for EM Analysis of LP2, Related to Figure 4

(A) Representative micrograph of negatively stained LP2. The scale bar indicates 100 nm.

(B) SDS-PAGE analysis of MBP-tagged LP2 before and after removal of the MBP tag. Arrows indicate the position of MBP-Rpn6 or untagged Rpn6.

(C and D) Extension of the Rpn6 N terminus was observed both in 3D reconstructions of lid performed in this study (C) and from EMD-1993 (D), indicating that the
presence or absence of Rpn12 in the complex, rather than sample preparation, accounts for the lack of density for the Rpn6 N terminus in LP2 reconstructions.
(E) Fourier shell correlation (FSC) curve for the final LP2 reconstruction, showing the resolution to be ~16 A using the 0.5 FSC criterion.

(F) Euler angle distribution for the final reconstruction.

(G) Reference-free 2D class averages of LP2 (first, third, fifth columns) matched to reprojections of the final reconstruction (second, fourth, and sixth columns).
The width of the boxes is ~430 A.

(H) Reference-free 2D class averages of purified recombinant LP2.
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Figure S4. Biochemical Analysis of LP2 Mutants, Related to Figure 6 and Discussion

(A) SDS-PAGE analysis of LP2 containing N-terminally EGFP-tagged Rpn6.

(B) SDS-PAGE analysis of LP2, LP2 containing Rpn6 N-terminal truncation mutants, and lid. Asterisk, a contaminating E. coli protein.

(C) From left to right: representative reference-free 2D class average of lid, the corresponding reference-free 2D class average of LP2 with the fusion of EGFP to
the N terminus of Rpn6, and a 2D difference map between the two class averages. This panel shows that the extended arm is most likely Rpn6’s N terminus rather
than EGFP. The width of the boxes is ~430 A.

(D) LP2 complexes containing mutant forms of Rpn6 are proficient for RP formation. The indicated forms of LP2 were incubated with 1 mM ATP, 1 uM re-
combinant Base precursor and 10 uM Rpn10, with or without 1 uM recombinant Rpn12 for 20 min at 30°C followed by native PAGE and immunoblotting against
FLAG-tagged Rpt1.

(E) LP2 and LP2 mutants do not show appreciable deubiquitinating activity toward polyubiquitinated Sic1. The indicated forms of LP2 at concentrations of 1 uM or
10 uM (left and right panels, respectively) were incubated with polyubiquitinated Sic1 (Saeki et al., 2005) for zero or two hours before analysis by SDS-PAGE and
immunoblotting against ubiquitin or Rpn3. As a control for deubiquitination, polyubiquitinated Sic1 was also incubated with 1 uM of the murine cytomegalovirus
M48 deubiquitinase (Schlieker et al., 2007). The high activity of this deubiquitinase resulted in a loss of some polyubiquitinated Sic1 (evident in the stacking gel) in
the seconds between addition of the enzyme and quenching of the reaction with Laemmli buffer and boiling.
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Supplemental Experimental Procedures

Purified LP2 and lid from yeast were prepared exactly as described previously (Tomko
and Hochstrasser, 2011). Recombinant Rpn10 was purified on Ni-NTA resin (Qiagen) via an N-
terminal 6His tag, followed by Sephacryl S-200 chromatography in Lid Buffer (50 mM
HEPES<NaOH, pH 7.5, 100 mM NaCl, 100 mM KCI, 5% glycerol, 1 mM DTT). Recombinant
base precursor bearing an N-terminal FLAG tag on Rptl and an N-terminal 6His tag on Rpt3
was expressed and purified exactly as described previously (Beckwith et al., 2013). Base
precursor bearing an N-terminal MBP tag on Rptl and a C-terminal 6His tag on Rpn2 was
purified exactly as for FLAG-tagged base precursor, except that the eluates from the Ni?* affinity
step were bound to amylose resin (NEB Corp.) in Base Buffer (50 mM HEPES+NaOH, pH 7.5,
100 mM NacCl, 100 mM KCI, 10 mM MgCl,, 0.5 mM EDTA, 10% glycerol, 1 mM DTT),
washed with Base Buffer, and eluted with Base Buffer containing 10 mM maltose instead of
FLAG peptide.

Recombinant LP2, lid, and their derivatives were expressed in BL21-STAR (DE3) cells
(Invitrogen) in Terrific Broth overnight at 16°C. For purification of complexes harboring an N-
terminal MBP tag on Rpn6, cells in Lid Buffer supplemented with protease inhibitors were lysed
using an M-110EH microfluidizer (Microfluidics Corp.). Lysates were cleared by centrifugation
for 20 min at 30,000 x g at 4°C and bound to amylose resin. After washing extensively with Lid
Buffer, proteins were eluted with 10 mM maltose in Lid Buffer, and separated by Superose 6
chromatography (GE Life Sciences) isocratically in Lid Buffer. The MBP tag was removed with
human rhinovirus 3C protease overnight at 4°C, and the protease and cleaved tag were removed
by Superose 6 chromatography as above. Polyhistidine-tagged proteins were purified as above,

except that lysis and wash buffers for affinity purification contained 20 mM imidazole, Ni-NTA



resin was substituted for amylose resin, and proteins were eluted with Lid Buffer containing 500
mM imidazole. Complexes were then further purified by Superose 6 chromatography in Lid
Buffer. All proteins were concentrated via centrifugal filtration using concentrators (Amicon)
with an appropriate molecular weight cut-off for retention of the desired species, flash-frozen in

liquid nitrogen, and stored at -80°C until use.

Single-particle pre-processing, alignment, and classification. All image pre-processing and
two-dimensional classification was performed in Appion (Lander et al., 2009) as described
previously (Lander et al., 2012). The contrast transfer function (CTF) of each micrograph was
estimated, and particles were selected concurrently with data collection using ACE2 (Mallick et
al., 2005) and a template-based particle picker (Roseman, 2004), respectively. Reference-free 2D
class averages of lid and reference-free 2D class averages of LP2 were used to minimize
reference bias. Micrograph phases were corrected using ACE2 (Mallick et al., 2005), and the
negatively stained LP2/lid particles were extracted using a 288 x 288-pixel box size. The particle
stacks were binned by a factor of 2 for processing, and particles were normalized to remove
pixels whose values were above or below 4.5-6 of the mean pixel value using XMIPP (Sorzano
et al., 2004). Particle stacks were binned again by a factor of 2 and subjected to five rounds of
iterative multivariate statistical analysis (MSA) and multi-reference alignment (MRA) using the
IMAGIC (van Heel et al.) software package to generate reference-fee class averages. The
resulting set of class averages for each species was normalized using ‘proc2d’ in EMAN (Ludtke
etal., 1999). The EMAN classification program ‘classesbymra’ was used to match each LP2

complex to the best-matching lid class average based on cross-correlation coefficients.



3D reconstruction and analysis. All three-dimensional reconstructions were performed using
an iterative projection-matching refinement with libraries from the EMANZ2 and SPARX
software packages (Hohn et al.; Tang et al.). Refinement of the initial models began using an
angular increment of 25°, progressing down to 4° for all reconstructions. The initial model used
for each dataset was EMDB-1993 (Lander et al., 2012) low-pass filtered to 60-A resolution. In
an alternative approach for the lid, we used a low-pass filtered model of the other structure (LP2)
after refinement as an initial model for the above-mentioned projection matching refinement.
This led to an EM density with similar structural features (data not shown). Estimated resolutions
were determined by calculating the Fourier shell correlation (FSC) between each of the back-
projected volumes of two equally sized data sets. The final reconstructions of LP2 and lid
showed structural features to ~16 A and ~22 A, respectively, based on the 0.5 Fourier shell
correlation criterion (Fig. S3E). Reprojections of the final three-dimensional reconstruction of
LP2 showed excellent agreement with the reference-free class averages (Fig. S3G) and displayed
a large distribution of Euler angles, despite some preferential orientations of the particles on the
carbon film (Fig. S3F).

The final reconstruction was segmented using Segger (Pintilie et al., 2010) in Chimera
(Pettersen et al., 2004) based on inspection of the similarities between our LP2 reconstruction
and the previously determined structure and segmentation of the lid (Lander et al., 2012). LP2
was superimposed onto the pseudo-atomic model of the 26S proteasome using a multi-step
procedure. First, the previously determined lid structure was segmented and then docked into the
lid subunits on the pseudo-atomic model of the 26S proteasome. Then, we docked our LP2
reconstruction into the lid density by optimizing the cross-correlation coefficient between the

two EM densities. The N-terminal domain of Rpn6 from the pseudo-atomic model is not



accommodated by either of the EM structures, likely due to structural changes that occur upon

Lid incorporation into the core particle as described previously (Lander et al., 2012).

Mass spectrometric analysis. We first excised cross-linked products of lid and LP2 from SDS-
PAGE gels to obtain monomers, and not higher-order cross-linked forms, of each complex. The
monomers of cross-linked lid and LP2 were then mixed after tryptic digestion. A precise 1:1
mixing was achieved based on a preliminary experiment in which we mixed small aliquots of
each digested sample, conducted mass spectrometric measurements to determine actual molar
ratios, and then used this information to normalize the protein amounts for mixing in the
crosslink mapping analysis. Specifically, the digested samples were mixed in an approximately
1:1 ratio as estimated by the approximate protein concentrations used in the experiment. A short
LC-MS analysis was conducted without any special instrument settings in order to detect linear
modified peptides. Peptides were identified using Mascot version 2.4 and allowing for the cross-
linker as a variable modification. Cross-linker modified peptides were then quantified by help of
XiQ using the parameters described previously (Fischer et al., 2013). The median ratio for the
modified peptides was used to correct the initial mixing ratio. Figure 2B illustrates the success of
this procedure, as the quantified linkages center around log 2 = 0, i.e. 1:1 mixing ratio. To
evaluate digestion efficiency, we used the number of uncut trypsin-cleavage sites in identified
linear (non-cross-linked peptides) as an indicator of incomplete digestion. Few missed cleavages
were found, suggesting similarly high and efficient digestion for both lid and LP2 samples.
LC-MS/MS analysis was conducted using a hybrid quadrupole-Orbitrap mass
spectrometer (Q Exactive, Thermo Fisher Scientific). Peptides were separated on a reversed-

phase analytical column (Chen et al., 2010). Mobile phase A consisted of water and 0.1% v/v



formic acid. Mobile phase B consisted of 80% v/v acetonitrile and 0.1% v/v formic acid.
Peptides were loaded at a flow rate of 500 nl/min and eluted at 200 nl/min. The separation
gradient consisted of a linear increase from 2% mobile phase B to 40% mobile phase B in 79
minutes and a subsequent linear increase to 95% B over 11 minutes. Eluted peptides were
directly sprayed into the Q Exactive mass spectrometer. MS data were acquired in the data-
dependent mode. For each acquisition cycle, the MS spectrum was recorded in the Orbitrap at
70,000 resolution. The ten most intense ions in the MS spectrum, with a precursor charge state
3+ or greater, were fragmented by Higher Energy Collision Induced Dissociation (HCD). The
fragmentation spectra were thus recorded in the Orbitrap at 35,000 resolution. Dynamic

exclusion was enabled, with single-repeat count and a 40 second exclusion duration.

Identification of cross-linked peptides. The raw mass spectrometric data files were processed
into peak lists using MaxQuant version 1.2.2.5 (Cox and Mann, 2008) with default parameters,
except that “Top MS/MS Peaks per 100 Da” was set to 20. The peak lists were searched against
sequences of all lid subunits using Xi software (ERI, Edinburgh) for identification of cross-
linked peptides. Search parameters were as follows: MS accuracy, 6 ppm; MS2 accuracy, 20
ppm; enzyme, trypsin; specificity, fully tryptic; allowed number of missed cleavages, four; cross-
linker, BS®/BS3-d4; fixed modifications, carbamidomethylation on cysteine; variable
modifications, oxidation on methionine. The linkage specificity for BS® was assumed to be for
lysine, serine, threonine, tyrosine and protein N-termini. All identified cross-linked peptides
were validated manually based on their MS2 spectra and MS signals (either as doublet signals or

singlet signals with corresponding mass shift in label-swapped replica analysis Fig 2A).



Quantitation of cross-linking data. Identified cross-linked peptides were quantified based on
their MS signals. Quantitative proteomics software tool Pinpoint was used to retrieve intensities
of both light and heavy signals for each cross-linked peptides in an automated manner. An input
library for cross-linked peptides was constructed according to “General Spectral Library Format
for Pinpoint Comma Separated Values” (Thermo Fisher Scientific). The three most abundant
isotope peaks were used for quantitation. The error tolerance for precursor m/z was set to 6ppm.
Signals were only accepted within a window of retention time (defied in spectral library) £10
minutes. Manual inspection was carried out to ensure the correct isolation of elution peaks. For
each cross-linked peptide, elution peak areas of the light and the heavy signals were measured
and signal fold changes were calculated as log2 (LP2/lid). Quantitation data was subsequently
summarized at the level of unique residue pairs (cross-links). A cross-link was defined as a
unique cross-link in either lid or LP2 only if all its supporting cross-linked peptides were
observed as according singlet signals. Otherwise, cross-links were regarded as being observed in
both particles. For a cross-link, the signal fold change was defined as the median of all its
supporting cross-linked peptides. Only those cross-links that were consistently quantified in both
paired replicas (with label-swap) were accepted for subsequent structural analysis. Singlet cross-
links were further confirmed by a mass shift of 4 Da, resulting from the label-swap. For cross-
links observed as a doublet, the average of fold ratios from replica analyses was reported. All
quantified cross-links were listed in Supplementary Table S1. Cross-links that were significantly
enriched in lid or LP2 were determined using “Significance A” test from the standard proteomics
data analysis tool Perseus (version 1.4.1.2) (Cox and Mann, 2008) based on log2(LP2/lid) values.
The following parameters were used for the test: “Side”: both; “Use for truncation”: P value;

“Threshold value”: 0.05.



Mapping and comparing cross-linking data with the pseudoatomic model of lid

To compare cross-linking data on the isolated lid with the structure of the lid in the context of the
26S proteasome, we mapped the identified and quantified lid cross-links onto the pseudoatomic
structure of lid in the 26S proteasome structure (PDB 4CR2). Using PyMol (version 1.2b5)
(DeLano, 2002), cross-links were displayed as lines between the C-a atoms of linked residues
(cross-links were displayed only when both linked residues were present in the structure 4CR2).
The distance of a cross-linked residue pair was measured between the C-a atoms. Measured
distances of linked residue pairs in the pseudoatomic structure were compared to a theoretical
cross-linking limit, which was calculated as side-chain length of cross-linked residues plus the
spacer length of the cross-linker (11.4 A for BS3). An additional 2 A was added for each residue
as an allowance for residue displacement from the pseudoatomic structure. The following side
chain lengths were used for the calculation: 6.0 A for lysine, 2.4 A for threonine, 2.4 A for serine
and 6.5 A for tyrosine. For example, for a lysine-lysine cross-link, this limit is
6+6+11.4+2+2=27.4 A. While one might use a larger distance cut-off, we see most of our data in
other studies where crystal structures were available to adhere to this upper limit. Also, the links
that we observed in this study as over-length exceeded our upper limit by up to 99 A and thus

require the assumption of large conformational changes.



Supplemental Table S2 Related to Experimental Procedures. Plasmids used in this study.

Plasmid
pPRT205
pRT585%
pPRT586
PRT945%
pRT1010
pRT1030
pRT1031
pRT1032
pRT1078
PRT1096°
PRT1097"
pRT1098°
pRT1122
pRT1202
PRT1260

Genotype

pET28a-Rpn10

PET42b-Rpn3 : Seml : Rpn7

PET42b-Rpn3 : Seml : Rpn7 : Rpnl2
pCDF42b-6His-MBP-3Cx-Rpn6 : Rpn9 : Rpnll : Rpn5 : Rpn8
pCDF42b-10His-EGFP-Rpn6 : Rpn9 : Rpnll : Rpn5 : Rpn8
pCDF42b-6His-Rpn6 : Rpn9 : Rpnll : Rpn5 : Rpn8
pCDF42b-6His-rpn6(173-434) : Rpn9 : Rpnll : Rpn5 : Rpn8
pCDF42b-6His-rpn6(212-434) : Rpn9 : Rpnll : Rpn5 : Rpn8
PET42b-Rpn3 : Seml : Rpn7 : rpn12(E271K)
pCOLADuet-1-FLAG-Rptl : Rpt2 : 6His-Rpt3 : Rpt5 : Rpt6 : Rpt4
pETDuet-1-Rpnl : Rpn2 : Rpn13

pPACYCDuet-1-Nas6 : Nas2 : Hsm3 : Rpnl14
PET42b-6His-Cys-rpn12(C23S,D265A)

pETDuet-1-Rpnl : Rpn2-6His : Rpn13
pCOLADuet-1-MBP-3Cx-Rptl : Rpt2 : Rpt3 : Rpt5 : Rpt6 : Rpt4

4 Described in Mol Cell. 2014;53:433-43.
b Described in Nat Struct Mol Biol. 2013; 20:1164-72.

Note: Unless otherwise indicated, all plasmids were produced in this study. 3Cx indicates a

human rhinovirus 3C protease cut site.
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