

FLORIDA STATE UNIVERSITY COLLEGE OF MEDICINE

Research Workshop Series #4
Research Design II

The Research Process

Protocol Components

- Research Topic & Question
- Background/ Literature Review
- Research Objectives
- Hypotheses
- Study Designs
- Independent & Dependent Variables
- Subject Selection/Inclusion & Exclusion Criteria
- Study Implementation & Keys to Success
- Data Management & Statistical Analysis
- References

^{*}Additional components required for clinical drug trials

Study Design

Study Design

- Guides interpretation of study results
- Can be quantitative, qualitative, or mixed methods
- Approach may depend on feasibility

Various types of designs

- Retrospective
- Prospective
- Observational
- Interventional
- Longitudinal

Cohort Study

- Type of observational design
 - Participants are treated as a group
 - Share something in common (i.e. disease, injury, prescribed medication)
 - Cohort group compared to control over period of time

* Example:

Evaluating the longitudinal impact of warfarin on drugdrug interactions or drug-disease interactions.

Cohort Study

Advantages

- Provides clarity of sequence of events
- Aids incidence calculation
- Can study rare exposures (e.g. Agent Orange)
- Examine multiple effects of a single exposure
- Avoid selection bias

Limitations

- May be difficult to follow subjects longitudinally
- Expensive & time consuming
- Not optimal for rare diseases

Cross-Sectional Study

- Type of observational design
 - Observational study at a point in time
 - Data collected from a population subset and is analyzed

* Example:

Effect of childhood trauma on cognitive functioning as adults

Cross-Sectional Study

Advantages

- Less time-consuming
- Inexpensive
- Can examine prevalence of exposure and outcomes

Limitations

Lacks element of time- just a snapshot

Case-Control Study

- Type of observational design
 - Retrospectively investigates whether or not frequency of exposure is associated with a particular outcome
 - Cases are compared to those with little or no exposure

*Example:

Exposure to second hand tobacco smoke to asthma in children

Case-Control Study

Advantages

- Inexpensive
- Less time-consuming than cohort design
- Efficient for studying rare outcomes

Limitations

- Subject to recall bias
- Not optimal for rare exposures
- Difficult to establish timing of exposure and outcome

Crossover Study

- Type of interventional design
 - Two treatments given consecutively to participants
 - Each group serves as their own control

* Example:

Evaluating the effects of glucose and sucrose on mood

Crossover Study

Advantages

- Minimizes influence of confounding variables
- Statistically efficient
- Requires fewer subjects

Limitations

- May not always be feasible or ethical
- Can have "order effects": order of administration of treatment may affect outcomes
- "Carry-over" between treatments can confound treatment effects

Randomized Control

- Type of interventional design
 - People allocated at random to intervention or control groups (standard of care/placebo)
 - Considered the gold standard of clinical trial designs

* Example

Drug trials with study drug vs. placebo

Randomized Control

Advantages

- Can investigate cause-effect relationships with minimum bias and confounding variables
- Easier to generalize your findings
- Controls for selection bias
- Crossover design can be used

Limitations

- Expensive and time consuming
- Follow up can be difficult to complete with patients

Independent & Dependent Variables

Independent & Dependent Variables

- What factors will be measured
- Independent Variable
 - Stable and unaffected by other variables measured
 - Predictor variable
- Dependent Variable
 - Depends on other factors that are measured
 - Expected to change
 - Outcome variable

Exercise

• Opioid doses and acute care utilization outcomes for adults with sickle cell disease: ED versus acute care unit

Independent Variable:

 SCD Pain-related care received at Emergency Department or Acute Care Unit

• Dependent Variable(s):

- Dosage of opioids
- Pain ratings
- Hospital admission rates
- Length of stay

Subject Selection & Exclusion | Exclusion | Criteria

Subject Selection

- Define the target population
 - Determine population of interest
 - Identify patients best suited for the research question
- Determine Sample Size
 - Consider number of subjects needed
 - Is this number achievable?
 - Specify the inclusion/exclusion criteria
- Items to consider
 - Cost per patient
 - Controlling for random error
 - Generalizability to the population of interest
 - Clarity and realism of inclusion & exclusion criteria

Study Population: Sampling

- Who is your target population?
- How many participants are needed?
- What sampling method will you use?

How can you maximize the representation of your

sample?

Sampling Strategies

Your sampling strategy is crucial in ensuring you have adequate representation of the entire study population.

Probability Sampling

- Simple random sampling
- Systemic sampling
- Stratified sampling
- Cluster sampling
- Multistage sampling

Nonprobability Sampling

- Quota sampling
- Convenience sampling
- Purposive sampling
- Snowball sampling

Additional information on sampling strategies

How many subjects do I need?

Quantitative Data: Power Analysis

- Plan for estimating study scope
- Aids in determining sample size required to show an effect of a given size with a specified degree of confidence (i.e. 95% CI)
- Determines the number of participants needed to help generalize study findings
- Probability of finding an effect that is really there
- Basis for testing the statistical significance of findings

Qualitative Data: Data/Theoretical Saturation

- Goal: depth of data, not a specific number of subjects
- Saturation: when incoming data becomes repetitive and contains no new information

Inclusion & Exclusion Criteria

- Inclusion criteria attributes or characteristics of subjects that are necessary for study participation.

 - Current tobacco use
 - BMI between 18-40 Presents with chronic pain
 - 1000 mg Tylenol daily for 1 year
- Exclusion criteria attributes or characteristics that exclude the subject from study participation
 - Positive urine drug screen
 Uncontrolled HTN
 - Cancer treatment in past 5
 IM of Haldol in past 60 d yrs

Evaluating Eligibility Criteria

- Subjects must have hypertension.
 - Too vague, needs quantifiable parameters
- Subjects who have a major medical condition will be excluded from the study.
 - Too general, it is better to specify a list of excluded conditions within a specific time frame (five years)
- Subjects aged 18-64 will be included in the study.
 - -Good, clear, and precise

Practice-based Study Implementation & Keys to Success

Study Implementation

- Planning is key
- Develop logistical processes
- Recruit site(s) and determine physician and staff roles
- Regulatory processes, Research Advisory Committees, IRBs
- Form development
 - Recruitment materials
 - Enrollment and other tracking logs
 - Data collection templates
 - Develop interview/focus group guides
- Data storage platform
- Site level training

Keys to Success

- Acknowledge clinic time constraints
- Develop processes with minimal workflow disruption
- Flexible protocol to achieve project goals
- Engaging entire clinic in the study concept
- Creating collaborative professional relationships

Data Management & Analysis

Quantitative Research

Quantifiable data:

Based on quantities obtained using an objective measurement process

- Surveys with closed-ended questions
- Lab results

• Benefits:

- Data can be collected and analyzed quickly
- Can generalize to population
- Reliable
- Repeatable

Common Statistical Tests

(Handout)

Correlational

- Pearson correlation
- Spearman correlation
- Chi-square

Comparison of Means

- Paired T-test
- Independent T-test
- ANOVA

Regression

- Linear or Logistic
- Simple regression
- Multiple regression

• Non-parametric

- Wilcoxon rank-sum test
- Wilcoxon sign-rank test
- Sign test

Statistical Tests Example

- Opioid doses and acute care utilization outcomes for adults with sickle cell disease: ED versus acute care unit
- Descriptive statistics
 - Mean; standard deviation, count, frequency
- Fisher's Tests & ANOVA
 - Compare demographics of patients visiting ED; ACU; Both
- Regression
 - Compare patient outcomes between ED and ACU

Qualitative Research

Descriptive in nature

Data Collection:

- Interviews
- Focus groups
- Ethnography
- Open ended questions on surveys, etc.

Benefits:

- Depth of data
- Focuses on key issues of participants from their perspective
- Investigate sensitive and complex topics

Qualitative Analysis

- Qualitative research generates large amounts of text data
 - Just one transcript can generate easily generate 20 pages of text
- Analysis is labor intensive and time consuming
- Goal is to extrapolate meaning from subjects' words
 - Emic perspective: represents the subjects' views and perspectives, not the researchers'
 - Grounded theory: building theories that are grounded in/based on the data

Qualitative Analysis

- Analysis Steps
 - Document (e.g., field notes, transcripts of recorded interviews)
 - Define concepts and categories
 - Code data
 - Explore relationships, themes
- Analytical software: 2 most common
 - Atlas.ti
 - Nvivo

Group Activity

You want to conduct a study comparing patients taking antihypertensive medications after a stroke and identify subsequent ER visits and hospital admissions for recurrent stroke. How might you address the following key questions for the study design?

Please reference handout: "Small Group Exercise for Workshop Research Design 2"

Thank you!

Questions & Discussion