

Ethnobotany and the discovery of anti-infectives for the postantibiotic era

Cassandra L. Quave, Ph.D. Assistant Professor of Dermatology & Human Health Curator, Emory University Herbarium E-mail: cquave@emory.edu

Lab Website: http://etnobotanica.us/ Twitter: @QuaveEthnobot

Medical Ethnobotany & Anti-Infective Drug Discovery

Casandra L. Quave, Ph.D. Personal/Professional Financial Relationships with Industry

External Industry Relationships	Company Name	Role
Equity, stock, or options in biomedical industry	PhytoTEK LLC	CEO/CSO
companies or publishers	Lifestory Health	SAB
Board of Directors or officer	PhytoTEK LLC	CEO/CSO
Royalties from Emory or from external entity	None	
Industry funds to Emory for my research	The Coca Cola Company; NatureX; Bionorica SE	PI
Other		

Overview

- Challenges presented by antibiotic resistance
- Ethnobotany as a key piece to the toolkit for drug discovery
- Examples of discoveries in this arena:
 - Biofilm inhibitors
 - Quorum sensing inhibitors
 - Resistance modifying agents

A Dance with Death: Birth defects, amputation & infection

Diagnosis: Congenital absence of the right fibula, shortened tibia and femur, and pseudarthrosis of right ankle

You only live twice: Once when you are born and once when you look death in the face.

-Ian Fleming, You Only Live Twice, 1964

Early days of adventure in Florida...from the swamps to the high seas

Nature, science & medicine

Emergency Room

Science fair: microbiology and studies on *E. coli* infections and antibiotic resistance

Land Clearing

Rise of the Post-Antibiotic Era

An increasing proportion of bacteria display resistance to common antibiotics.

Review on Antimicrobial Resistance

Source: CDDEP ResistanceMap, based in part on data obtained under license from IMS MIDAS

WHO priority pathogens list for R&D of new antibiotics

Priority 1: CRITICAL

- Acinetobacter baumannii, carbapenem-resistant
- Pseudomonas aeruginosa, carbapenem-resistant
- *Enterobacteriaceae*, carbapenem-resistant, ESBL-producing Priority 2: HIGH
- Enterococcus faecium, vancomycin-resistant
- Staphylococcus aureus, methicillin-resistant, vancomycinintermediate and resistant
- *Helicobacter pylori*, clarithromycin-resistant
- *Campylobacter* spp., fluoroquinolone-resistant
- Salmonellae, fluoroquinolone-resistant
- *Neisseria gonorrhoeae*, cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: MEDIUM

- *Streptococcus pneumoniae*, penicillin-non-susceptible
- *Haemophilus influenzae*, ampicillin-resistant
- Shigella spp., fluoroquinolone-resistant

WHO News Release, February 27, 2017

Shift from natural products to HTS screens of combi-chem libraries & focus on protein targets

Antibiotic Discovery Void

More than 30-Year Void in Discovery of New Types of Antibiotics 9 patented 7 No registered classes of 5 antibiotics 5 discovered 큠 after 1984 Number of antibiotic 2 2 0 1890s 1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 2000s 2010s 1990s Decade

New classes introduced into the market but discovered in the past

Adapted from Lynn Silver, "Challenges of Antibacterial Discovery", Clin. Microbiol. Rev. (2011) 2016 The Pew Charitable Trust

FIG. 1. Illustration of the "discovery void." Dates indicated are those of reported initial discovery or patent.

Latest representatives of novel antibacterial classes

Structure	Name	Class	Year to Market	Year Class Discovered	
F N O O O	Linezolid	Oxazolidinones	2000	1978	
(+ + + + + + + + + + + + + + + + + + +	Daptomycin	Acid lipopeptides	2003	1987	
S C H	Retapamulin	Pleuromutilins	2007	1952	

Adapted from Lynn Silver, "Challenges of Antibacterial Discovery", Clin. Microbiol. Rev. (2011)

Where to find new drugs for MDR infections?

- Environmental samples
 - Soil microbes
 - Marine organisms
- Endophytes"Unculturable" microbes
- Genome mining
- Animal proteins
 Plants and fungi

Plants as a source of medicine

Kew Report: State of the World's Plants 2017

Useful plants

At least 28,187 plant species are currently recorded as being of medicinal use

Plant natural products in the Nobel Prize spotlight

Ming dynasty version (1574 CE) of the handbook. "A handful of qinghao immersed with 2 liters of water, wring out the juice and drink it all" is printed in the fifth line from the right.

Artemisia annua L., Asteraceae

Tu, Y. 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine *Nature Medicine* 17: 1217–1220

Core Research Approach

How to pick a field research location?

- Global Hotspots of Biodiversity
 - As many as 44% of all species of vascular plants confined to 25 hotspots comprising 1.4% of Earth's land surface
 - 25,000 plants native to the Mediterranean basin
 - 13,000 of these are endemic!

The 25 hotspots of biodiversity.

Myers, N., et al. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858,

Ethnobotanical Approach to Drug Discovery

Collection sites: USA (Oregon, Florida, Georgia); Italy (Basilicata, Sicily, Aegadian Islands, Pantelleria); Albania (NE), Kosovo (Central and SW)

Economic Hours House

Hisbed for The Society for Generatic Bolgar by The New York Buturical Garden

Springer

Why do fieldwork in the Mediterranean?

- High levels of endemism
- High density of biological and cultural diversity
- Different groups may use same ecological resources in very different ways!
- Flora underexplored for drug discovery

ARTICLES SHED: 2 FEBRUARY 2015 | ARTICLE NUMBER: 14021 | DOI: 10.1038/NPLANTS.2014.21

A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans

Cassandra L. Quave12* and Andrea Pieroni³

Forty-five years later: The shifting dynamic of traditional ecological knowledge on Pantelleria Island, Italy

CASSANDRA L. QUAVE*,1,2,3 AND ALESSANDRO SAITTA⁴

Journal of Ethnobiology and Ethnomedicine

Research

Dermatological remedies in the traditional pharmacopoeia of Vulture-Alto Bradano, inland southern Italy Cassandra L Quave^{*1}, Andrea Pieroni² and Bradley C Bennett¹

Available online at www.sciencedirect.com

BioMed Central

Open Access

Journal of Ethnopharmacology 101 (2005) 258-270

www.elsevier.com/locate/jethpharm

Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: A comparison

Andrea Pieroni^{a,b,*}, Cassandra L. Quave^c

Albania, 2012

Pantelleria, 2014

Daphne gnidium L., Thymelaceae

Kosovo, 2015

Aegadian Islands, 2017

Interviews & Plant Collecting

- Prior informed consent
- Follow SEB/ISE Code of Ethics
- Access & Benefit Sharing

Access and Benefit Sharing

- Returning traditional knowledge to communities:
 - Book in local language
 - Community garden (ethnobotanical)
 - Community workshops
- Fostering training of local students and scientists
 - Research training workshops
 - University capacity building projects
 - Student exchange programs
- Collaboration agreements with local university partners and communities

Medicina Popolare del Vulture

Traditional Medicine of the Vulture-Alto Bradano area, southern Italy

Cassandra Leah Quave

Plant Extraction

Vacuum-sealed with silica packets and shipped to lab

Pulverized with a grinder

1:10 extraction in 95% EtOH or MeOH for 2 x 72 hrs. <u>or</u> boiled in water for 30 minutes

Dried 48-72 hrs

Plant Extraction

Dried extracts scraped out and weighed

Plant materials separated from extract with vacuum filtration

Solvent removed under reduced pressure with a rotary evaporator After freezing at -80°C, extracts are lyophilized

Quave Natural Products Library (QNPL) Inspired by traditional medicine. Driven by bioactivity.

- >1,400 botanical and fungal extracts
 - plus fractions from bioactive leads
- Library uniquely targets plants used in human medicine and food
- Existing extract library is:
 - Biodiverse:
 - 51 orders
 - >400 species
 - Linked to ethnobotanical use data

Diversity of the Quave Natural Products Library (QNPL)

5.50%	Apiales	
4.31%	Asparagales	
8.61%	Asterales	
2.63%	Brassicales	
4.78%	Caryophyllales	
2.39%	Dipsacales	
2.39%	Ericales	
6.94%	Fabales	P
3.59%	Fagales	
1.67%	Gentianales	
12.44%	Lamiales	-
2.15%	Malpighiales	
3.35%	Malvales	
20.57%	6 Other (=4 per Order)	
2.15%	Pinales	
3.59%	Poales	
3.11%	Polyporales	
2.15%	Ranunculales	
5.74%	Rosales	
1.91%	Sapindales	

	Species	Genera	Families	Orders	
Plants	396	271	106	45	
Fungi	22	22	11	6	
TOTAL	418	293	117	51	

New solutions require innovative & timely screens

New solutions require innovative & timely screens

- Opportunistic pathogen
- Leading cause of:
 - Bacteremia
 - Sepsis
 - Brain abscesses
 - Medical device infections
 - Skin and soft tissue infections (SSTI)

- Colonizes nasal passages of 30% healthy adults in US
- Commonly implicated in:
 - Bone and joint infections
 - Surgical site infections
 - Pneumonia
 - Endocarditis
- HA-MRSA vs. CA-MRSA

Intrinisic Resistance: Biofilm

- Uni- or Poly-microbial
- Heightened gene exchange
- Slow growth/metabolism
- Matrix presents a physical barrier to host immune response and antibiotic therapy

Elmleaf Blackberry

- Traditional uses in S. Italy:
 - Leaves: furuncles, abscesses, and other skin inflammations
 - Roots: hair loss
 - Fruits: eaten fresh and in marmalades
- One of 116 remedies related to SSTIs and other topical dermatological treatments identified
- 168 extracts screened
- Anti-biofilm activity first identified & published in 2008 and # 220 marked as possible lead

Rubus ulmifolius Schott. (Rosaceae): The source of the bioactive composition "220D-F2".

- Quave, C.L., A. Pieroni, and B.C. Bennett (2008) **Dermatological remedies in the traditional pharmacopoeia of Vulture-Alto Bradano, inland southern Italy.** *Journal of Ethnobiology and Ethnomedicine* 4:5.
- Quave, C.L., L.R.W. Plano, *T. Pantuso, and B.C. Bennett (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence in MRSA. *Journal of Ethnopharmacology* 118: 418-428

Intrinisic Resistance: Biofilm

c acid glycosides from *Rubus ulmifolius* block biofilm formation and potentiate antibiotic clearance of biofilm or

Ellagic acid glycosides from *Rubus ulmifolius* block biofilm formation and potentiate antibiotic clearance of biofilm on catheters.

Quave et al. (2012). Ellagic acid derivatives from *Rubus ulmifolius* inhibit *Staphylococcus aureus* biofilm formation and improve response to antibiotics. *PLoS ONE* 7(1): e28737. Talekar et al.(2014). 220D-F2 from *Rubus ulmifolius* kills *Streptococcus pneumoniae* planktonic cells and pneumococcal biofilms. *PLoS ONE* 9(5): e97314.

220D-F2 improves response to functionally distinct

Quave et al., PLoS One. 2012: 7(1)

The sugar is important!

Fontaine BM, Nelson K, Lyles JT, Jariwala PB, Garcia-Rodriguez JM, Quave CL and Weinert EE (2017). Identification of Ellagic Acid Rhamnoside as a Bioactive Component of a Complex Botanical Extract with Anti-Biofilm Activity. *Front. Microbiol.* **8**:496

Synthetic library of glycosides (ellagic acid, catechol, phenol)

TBSO

Synthesis of ellagic acid glycosides. a) TBSCl, Im, DMAP, CH₂Cl₂/DMF, 50°C, 36 h, 71%; b) TASF, CH₂Cl₂, room temperature, 1 min; then glycosyl donor, Bu₄NI (xyloside only), reflux, 48 h, 13-15%. c) 1) K₂CO₃, DMF/H₂O; 2) K₂CO₃, MeOH/H₂O, 86-92%.

Killing of planktonic pneumococci by 220D-F2. *Streptococcus pneumoniae* strain D39 was inoculated in 24 well-plates containing THY and treated with DMSO or the indicated concentration of 220D-F2; treated cultures were incubated for 3 h at 37°C. Planktonic cells were removed (**A**) and then biofilms were washed and removed (**B**). Both populations were diluted and plated onto BAP to obtain CFU/ml. (**C**) Planktonic pneumococci treated for 3 h were also stained by the LIVE/DEAD assay and imaged using a fluorescent microscope. (Data: Vidal Lab)

Talekar, S.J., S. Chochua, K. Nelson, K.P. Klugman, C.L. Quave and J.E. Vidal (2014). 220D-F2 from *Rubus ulmifolius* kills *Streptococcus pneumoniae* planktonic cells and pneumococcal biofilms. PLoS ONE 9(5): e97314.

Killing of mature pneumococcal biofilms by

220D-F2. *S. pneumoniae* D39 was inoculated and incubated for 8 h at 37°C after which mature biofilms were washed and added with fresh THY containing the indicated concentration of 220D-F2 or DMSO. Treated biofilms were incubated for (A) 3, (B) 6, or (C) 12 h at 37°C and then washed, diluted and plated onto BAP to obtain CFU/ml. (Data: Vidal Lab)

Micrographs of 220D-F2 incubated with mature

pneumococcal biofilms. *S. pneumoniae* D39 was inoculated and incubated for 8 h at 37°C after which biofilms were washed and added with fresh THY containing the indicated concentration of 220D-F2 or DMSO. These treated mature biofilms were incubated for 3, 6 or 12 h and after washes, the biofilm structure was stained with DAPI (100 nM). Stained biofilms were imaged by fluorescence. (Data: Vidal Lab)

Talekar, S.J., S. Chochua, K. Nelson, K.P. Klugman, C.L. Quave and J.E. Vidal (2014). 220D-F2 from *Rubus ulmifolius* kills *Streptococcus pneumoniae* planktonic cells and pneumococcal biofilms. PLoS ONE 9(5): e97314.

CA-MRSA Epidemic

- Causes disease in otherwise healthy individuals
- Predominantly skin and soft tissue infections (~75%), but invasive disease is severe
- The most prevalent CA-MRSA isolates in the United States are USA400 (MW2) and USA300 (Los Angeles County clone, LAC)

Prominent CA-MRSA are Highly Virulent*

*First observed in humans

S. aureus exotoxins cause serious disease

Toxic Shock Syndrome Toxin (TSST-1) Pyrogenic Toxin Superantigens

Scalded Skin Syndrome Exfoliative Toxins

Abscesses, Necrosis, Sepsis Hemolytic Toxins, Proteases, Lipases

S. aureus immune evasion mechanisms

Rigby and De Leo. 2012 Semin. Immunopathology 34:237-29

Quorum Quenching Approach

Quorum quenching

- "Disarming" bacteria
- Protect the host
- Adjuvant to existing lines of antibiotics
- Accessory gene regulator (*agr*) system
 controls virulence

Quave & Horswill. (2014) Flipping the switch. Frontiers in Microbiology. 5(706):1-10

Quorum Quenching Approach

Quorum quenching

- "Disarming" bacteria
- Protect the host
- Adjuvant to existing lines of antibiotics
- Accessory gene regulator
 (*agr*) system
 controls virulence

Quave & Horswill. (2014) Flipping the switch. *Frontiers in Microbiology*. 5(706):1-10

Accessory Gene Regulator (Agr) System

Chestnut

- Virulence Factors
 - Attack host immune response
 - Cause tissue damage
 - Contribute to clinical failure in antibiotic therapy

ursene

Controlled by cell-cell communication

	400X	1000X	
Untreated (Neg. Control)			
Staurosporine (Pos. Control)			
Vehicle (DMSO)			
224С-F2 1 µg mL ⁻¹	1		
224С-F2 8 µg mL-1	8 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1	1.1	
224C-F2 16 μg mL ⁻¹			

ÇH₃

CH-

H₃C.

H₂C

oleanene H₃C

A

Vehicle DMSO)

50 µg

LAC A agr

CH₂

CHa

D2 Post-

infection

D6 Post-

infection

Quave et al. (2015) *Castanea sativa* (European Chestnut) leaf extracts rich in ursene and oleanene derivatives block *Staphylococcus aureus* virulence and pathogenesis without detectable resistance. PLoS ONE 10(8): e0136486.

Brazilian Peppertree

An exotic pest plant to some, a valued source of medicine to others. *Schinus terebinthifolia* Raddi is classified as a **Category I pest plant** by the Florida Exotic Pest Plant Council. Efforts to remove it from the United States have included the use of the herbicides triclopyr and glyphosate. On the other hand, its value as a medicinal plant has been broadly reported in South America

Where to collect?

Schinus terebisthifolius Raddi Brazilian peppertree

General Inform	and the second second
Reverbach:	5078
Grange	(Roll
Family	Anacaritas
Duration	Personal
Growth Habit:	they also
Ration Rature	10 1 100 1 100 1 100 1 100 1 100 1
Other Common Names	Ovistmax advisite
Data Source and Decum	intetion

Show All

430D-F5 inhibits agr in a non-biocide manner

Muhs et al. (2017) Virulence inhibitors from Brazilian Peppertree block quorum sensing and abate dermonecrosis in skin infection models. Scientific Reports 7: 42275 doi:10.1038/srep42275

430D-F5 mediates quorum quenching *in vivo* and attenuates MRSA-induced dermatopathology in a murine model of skin and soft tissue infection

430D-F5 impacts biofilm formation

Muhs et al. (2017) Scientific Reports 7: 42275

Characterization of 430D-F5 major constituents

(a) LC-FTMS ESI negative and positive base peak chromatograms for 430D-F5. (b) Putative structural matches are listed by peak number. Peak 2 was determined to be $C_{30}H_{17}O_{10}$ and putative structural matches include: (2a) amentoflavone, (2b) agathisflavone, and (2c) robustaflavone. Peak **4** was determined to be $C_{30}H_{21}O_{10}$ and putative structural matches include: (4a) chamaejasmin, (4b) tetrahydroamentoflavone, and (4c) tetrahydrorobustaflavone. Peak 14 was determined to be $C_{30}H_{45}O_4$ and putative structural matches include: (14a) albsapogenin, (14b) (13α,14β,17α,20R,24Z)-3α-hydroxy-21-oxolanosta-8,24-dien-26-oic acid, (**14c**) (13α,14β,17α,20S,24Z)-3α-hydroxy-21oxolanosta-8,24-dien-26-oic acid, (14d) (3α,13α,14β,17α,24Z)-3-hydroxy-7-oxo-lanosta-8,24-dien-26-oic acid, and (14e) mollinoic acid. Peak **19** was determined to be $C_{30}H_{45}O_4$ and putative structural matches include (19) isomasticadienonalic acid.

430D-F5 has limited impact on growth of commensal skin microflora

Spacing	Strain	МІС	420D-E-	Antibiotic Controls [*]				
species	Strain	MIC	4300-15	Amp	Clin	Erm	Van	
Corynebacterium	SK46	MIC ₅₀	ND (512)	0.0625	-	0.00781	0.5	
amycolatum		MIC ₉₀	ND (512)	2	-	2	2	
Corynebacterium striatum	FS-1	MIC ₅₀	ND (512)	ND (16)	-	1	0.5	
		MIC ₉₀	ND (512)	ND (16)	-	2	0.5	
Micrococcus luteus	SK58	MIC ₅₀	64	0.125	0.125	0.0625	0.25	
		MIC ₉₀	128	0.125	0.5	0.0625	0.25	
Propionibacterium acnes	HL005PA	MIC ₅₀	16	-	0.125	0.125	-	
	2; HM-493	MIC ₉₀		-				
			256		0.125	0.5	-	
~ 1 1			_					
Staphylococcus epidermidis	NIHLMoo	MIC ₅₀	64	0.03125	-	-	1	
	1; HM896	MIC ₉₀	ND (512)	0.0625	-	NT	1	
Stanhulococcus	NRS116	MIC	64	ND (32)	-	ND (32)	1	
haemolyticus		MIC ₀₀	ND (512)	ND (32	-	ND (32)	2	
Staphylococcus warneri	SK66	MIC_{50}^{90}	64	0.0625	-	-	0.5	
		MIC ₉₀	ND (512)	0.0625	-	-	1	
Streptococcus mitis	F0392	MIC ₅₀	64	0.03125	-	0.00781	0.5	
		MIC ₉₀	ND (512)	0.0625	-	0.03125	0.5	
Streptococcus pyogenes	MGAS1525	MIC ₅₀	ND (512)	0.0156	0.125	0.0625	-	
	2	MIC ₉₀	ND (512)	0.0313	0.125	0.0625	-	

Resistance Modification

Beta-lactam antibiotics

- Class of broad-spectrum antibiotics, all which have a beta-lactam ring in their molecular structures
 - Penams (penicillin derivatives)
 - Cephems (cephalosporins)
 - Monobactams
 - Carbapenems
- Act by inhibiting synthesis of peptidoglycan layer of cell wall
 Bactericidal
- Resistance occurs when enzymes breakdown the beta-lactam ring

Screening Platform

>900 extracts

 $(25 \,\mu\text{g/mL})$

Test +/- ¹/₄ MIC for Oxacillin in MRSA isolates

Test actives in 2D-checkerboard assay with Oxacillin & calculate FIC

Partitioning of active extract 649

Mechanistic studies Characterize by LC-FTMS Retest against multiple MRSA strains in checkerboard

Fractional Inhibitory Concentration (FIC)

Codrug

• FIC = MIC drug [in presence of codrug] / MIC drug alone

• FIC Index = $\sum FIC_x + FIC_y$

• FICI

- <0.5 is synergistic</p>
- 0.5-4 additive or no interaction

>4 antagonistic

Resistance Modifying Agents • 25/900 extracts showed β lactam sensitization (3%) hit rate from QNPL) • Extract 649 pursued due to high potency and lack of toxicity to human skin cells • History of use in Native

American medicine as poultice for infected wounds and ulcers

MIC Table

Ox breakpoint MIC = $2 \mu g/mL$

_	649		649B		649C		649D		649E	
Extract (µg/mL)	LAC	MW2	LAC	MW2	LAC	MW2	LAC	MW2	LAC	MW2
0	64	32	64	32	64	32	64	32	64	32
1	>8	>8	8	>8	8	>8	8	>8	>8	>8
2	>8	>8	8	>8	2	>8	>8	>8	>8	>8
4	1	>8	1	>8	1	>8	8	>8	8	>8
8	0.5	4	0.5	8	0.5	8	8	>8	>8	>8
16	0.25	2	0.5	2	0.25	2	>8	>8	8	>8
32	0.063	0.25	0.25	1	0.25	1	>8	>8	>8	>8

We achieved a **<u>1,000-fold drop</u>** in Oxacillin MIC (from 64 μ g/mL to 0.063 μ g/mL) with Extract 649

Ethnobotany in the post-antibiotic era

- How can we use traditional knowledge of anti-infective remedies to innovate the next generation of therapeutics?
- Looking beyond 1940's paradigm of kill, kill, kill....
 - Anti-virulence
 - Evasion of pathogen defenses (e.g. biofilm)
 - Potentiation of existing therapeutics that have lost activity
 - Host-directed therapies
 - Achieving balance....
- Can we develop the right questions?only then can we find the right answers.

Acknowledgements

Quave Lab & Herbarium (Emory)

James T. Lyles, PhD Thara Samarakoon, PhD Angelle Bullard, PhD Amelia Muhs Akram Salam

Kate Nelson Joan Shang Matt Mendelsohn Micah Dettweiler

Weinert Lab (Emory)

Emily Weinert, PhD

Ben Fontaine

Horswill Lab (U. Iowa) Alexander Horswill, PhD Jeff Kavanaugh, PhD Corey Parlet, PhD

Vidal Lab (Emory) Jorge Vidal, PhD Sharmila Talekar, PhD

Kubanek Lab (Ga Tech): Julia Kubanek, PhD Serge Lavoie, PhD

Melander Lab (NCSU)

Christian Melander, PhD Roberta Melander, PhD

Fieldwork collaborators:

Avni Hajdari, PhD (U. Prishtina. Kosovo) Alessandro Saitta, PhD (U. Palermo, Italy) Andrea Pieroni, PhD (U. Gastr. Sci., Italy) Alfonso La Rosa (Silene, Italy)

Special thanks to all of the communities that have collaborated in our projects!

Private Donors US Embassy in Kosovo Emory University National Institutes of Health NIH/NCCIH R01 AT007052 Georgia Research Alliance

Follow our work at <u>http://etnobotanica.us/</u>