THE DEVELOPMENTAL EFFECTS OF PRENATAL DRUG EXPOSURE: MARIJUANA

FSU Grand Rounds 12/13/2018

Funded by NIDA, NIAAA

First Specific Drug Associated with Initiation of Illicit Drug Use 2013

National Survey on Drug Use & Health (NSDUH), 2013

Past-Month Use of Selected Illicit Drugs

NSDUH, 2013

Past-Month Use of Selected Illicit Drugs

NSDUH, 2015

Past-Month Use of Selected Illicit Drugs

NSDUH, 2017

PAST MONTH MARIJUANA USE AMONG PREGNANT AND NONPREGNANT WOMEN

Percent

Brown et al., JAMA 2017

PAST MONTH MARIJUANA USE AMONG PREGNANT WOMEN BY AGE

Volkow et al., Annals Int Med 2017

Percent

INCREASING POTENCY OF MARIJUANA

INCREASING POTENCY OF MARIJUANA

LEGALIZATION OF MARIJUANA

Concerns grow about state's medical marijuana regulations

Massachusetts' possession limit ranks third highest among 21 states and the District of Columbia

UPDATED 11:49 PM EDT May 08, 2014

wcvb.com

Yet Another State Wants To Legalize Marijuana

The Huffington Post | by Kim Bellware
Posted: 04/29/2014 11:02 am EDT | Updated: 04/30/2014 5:59 pm EDT

INCREASING LEGALIZATION OF MARIJUANA

© () = @StatistaCharts * As of Nov 10, 2016 - laws in some states have not yet taken effect. Some states not highlighted allow limited medical marijuana access

Source: NY Times

INCREASING LEGALIZATION OF MARIJUANA

CHALLENGES IN STUDYING PRENATAL MARIJUANA EXPOSURE

- Theoretical model
- Assessment of exposure
- Assessment of outcomes
- Assessment of covariates
- Evaluating prenatal vs. current environmental influences

CHALLENGES IN STUDYING PRENATAL MARIJUANA EXPOSURE

- Theoretical model
- Assessment of exposure
- Assessment of outcomes
- Assessment of covariates
- Evaluating prenatal vs. current environmental influences

HOW TO MEASURE DRUG USE?

PARAMETERS FOR MEASURING SUBSTANCE USE

- Quantity
- Frequency
- Duration

HOW MUCH ALCOHOL IS IN A DRINK?

12 oz beer = 5 oz wine = shot of liquor

Each contains 0.5 oz of alcohol

WHAT IS MARIJUANA?

Cannabis Sativa plant

500+ compounds; 100+ cannabinoids

Main psychoactive ingredient is $\Delta 9$ -tetrahydrocannabinol ($\Delta 9$ -THC)

Mechoulam & Hanuš, 2000

JOINTS

BLUNTS

CIGARS, CIGARILLOS

PIPES, BONGS

MARIJUANA WAX

Image courtesy of the Weed Street Journal

MARIJUANA INTOXICATION

- Initially, increase in arousal, excitement, vasodilation, tachycardia, heightened senses
- Later, euphoria, sedation, relaxation; at high doses, perceptual changes, paranoia, anxiety attacks
- Post-intoxication involves low energy, decreased motivation, binge eating, sedation
- Side effects include memory impairments, impaired motor coordination, poor judgment, erratic behavior, reduced reaction time

NEUROBIOLOGY OF MARIJUANA

Endocannabinoids bind to cannabinoid receptors (CB1 and CB2)

CB1 receptors are GPCRs and are G_{i/o} coupled

Activation of CB1 typically decreases vesicular neurotransmitter release

Guzman (2003), Nat. Reviews Cancer

Brain regions that express the CB₁ cannabinoid receptor

Red = abundant CB₁ receptor expression Black = moderately abundant CB₁ receptor expression

NEUROBIOLOGY OF MARIJUANA

Elliot Gardner - Neuroscience Letters, 1991, 129: 1872-79

CANNABINOID EFFECTS ON DOPAMINE TRANSPORT

Stanwood group has described protective effects of GLP-1 receptor agonists on cocaine reward.

This is due to GLP-1 receptors blocking the endocannabinoid 2-AG, which then retrogradely alter the trafficking dynamics of the

dopamine transporter (the substrate for cocaine).

Transl Psychiatry. 2016 May; 6(5): e809

ENDOCANNABINOIDS AND NEURODEVELOPMENT

Figure 2. Proposed developmental roles of the endocannabinoid system. Top panel shows temporal changes in available quantities of the two major endocannabinoids, 2-AG and AEA, at the indicated developmental stages. Concentrations of 2-AG generally exceed those of AEA in the developing brain [15,16]. Bottom panels illustrate the major events of embryogenesis that are regulated by endocannabinoid signaling through the CB₁ receptor (shown in orange). Only the actions of known endocannabinoids and THC are shown. The term 'td-eCBs' refers to target-derived endocannabinoids potentially released from putative postsynaptic target cells during axon guidance. For further details, see Refs [2,5,15–18,24,27,31–34,36,38].

TRENDS in Pharmacological Sciences Vol.28 No.2

In human, CB1 receptors are detectable by week 14 of gestation

Many possible mechanisms through which drugs can alter fetal neurodevelopment

Developmental Consequences of Fetal Exposure to Drugs: What We Know and What We Still Must Learn

Emily J Ross¹, Devon L Graham², Kelli M Money³ and Gregg D Stanwood*^{,2,4}

¹Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA; ²Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; ³Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; ⁴The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA

Polypharmacy exposure (alcohol, tobacco, marijuana) Prenatal substance use

- Insomnia
- Memory loss
- Hallucinations
- Abnormal behavior

Lungs

- Pulmonary edema
- Breathing problems

Breastfeeding

- Continued exposure
- Decreased prolactin release and supply

Amniotic fluid

- Possible accumulation of
- intact drugs

Umbilical cord

- Drugs are passed directly to fetus
- Tissue can be used to detect drugs

Additional risk markers (maternal and paternal age, education, stressors) Increased risk Blood, heart, and skin infections Arrhythmias Infectious diseases Seizures Stroke Hypothermia Mother's blood

- Increased levels of CO₂ CO, and blood pressure
- Anemia
- Pre-eclampsia

Placenta

- Vasoconstriction
- Placental insufficiency
- Placental abruption

Uterus

- Premature birth
- Contractions

ANIMAL MODELS OF PRENATAL MARIJUANA / THC / CANNABINOIDS

- Generally speaking, the animal literature has been poorly developed!
- Multiple doses, duration, and routes of administration have been used with little consistency.
- Nevertheless, several recent studies of note.

Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB₁ receptors on developing cortical neurons

Adán de Salas-Quiroga^{a,b,c,1}, Javier Díaz-Alonso^{a,b,c,1,2}, Daniel García-Rincón^{a,b,c}, Floortje Remmers^d, David Vega^{a,c}, María Gómez-Cañas^{a,b,e}, Beat Lutz^d, Manuel Guzmán^{a,b,c}, and Ismael Galve-Roperh^{a,b,c,3}

PNAS | November 3, 2015 | vol. 112 | no. 44 | 13693-13698

Impaired performance on a skill pellet-reaching task

Transiently altered CB1 receptors during prenatal development

Deficits restored by normalization of CB1 receptors on excitatory neurons!

ORIGINAL ARTICLE Persistent inhibitory circuit defects and disrupted social behaviour following *in utero* exogenous cannabinoid exposure

GA Vargish, KA Pelkey, X Yuan, R Chittajallu, D Collins, C Fang and CJ McBain

Molecular Psychiatry (2017) 22, 56-67

Reduced hippocampal CCK-INT number and complexity

Compromised CCK-INTmediated feedforward and feedback inhibition

Altered social behavior

Pittsburgh Maternal Health Practices & Child Development Project Cohorts

PRENATAL PHASES

4th prenatal month

7th prenatal month

24-48 hrs post-delivery

1st trimester

2nd trimester

3rd trimester

STUDY DESIGN 22 YEARS 16 YEARS 414 YEARS ***10 YEARS** 3 YEARS 18 MONTHS ✤8 MONTHS DELIVERY (N = 763 combined cohort)

◆7TH PRENATAL MONTH

◆ 4TH PRENATAL MONTH 1982-1985

METHODS OF DETECTION

- Biological markers
- Interviews
- Self-report questionnaires

BIOLOGICAL MARKERS

Window of detection varies with:

- Type of assay
- Drug
- Chronicity of use

DETECTION OF MARIJUANA USE

DETECTION OF MARIJUANA USE

 Substantial evidence of greater detection of marijuana use by self-report/interview methods than by biological assays

Fendrich et al., 2004; Gray et al., 2010; Richardson et al., 2006

DETECTION OF MARIJUANA USE

Positive urine screen, reported use on interview:

95%

Reported use on interview, negative urine screen:

40%

IMPORTANCE OF QUESTION FORMAT

	Usual	
Marijuana	37%	
Cocaine	47%	

Richardson, Huestis, Day, 2006

IMPORTANCE OF QUESTION FORMAT

	Usual	Maximum	Minimum
Marijuana	37%	<mark>45%</mark>	17%
Cocaine	47%	<mark>50%</mark>	3%

Richardson, Huestis, Day, 2006

PATTERN OF MATERNAL MARIJUANA USE

PATTERN OF MATERNAL ALCOHOL USE

PATTERN OF MATERNAL TOBACCO USE

WHAT IS ASSOCIATED WITH PRENATAL MARIJUANA USE?

CHARACTERISTICS ASSOCIATED WITH 1ST TRIMESTER MARIJUANA USE

	<u>No Use</u>	<u>Heavy Use*</u>	Significance
Maternal age _(yrs)	22.9	23.2	ns
Education (yrs)	12.0	11.8	ns
% Caucasian	53.8	22.3	<i>р</i> < .01
% Married	37.6	18.4	<i>р</i> < .01
Family income (% < \$400/month)	56.1	71.3	р < .05

Day et al., 1991

USE OF OTHER SUBSTANCES BY FIRST TRIMESTER MARIJUANA USE

1st trimester drug use

PERCENT

EFFECTS OF PRENATAL MARIJUANA MATERNAL HEALTH COHORT

Birth <u>3 years</u> <u>6</u>

<u>6 years 10 years 14 years</u>

22 years

GROWTH

BEHAVIOR

COGNITIVE

EFFECTS ON COGNITION

RELATION BETWEEN PME & 6 YEAR IQ

	No marijuana use	Lightª marijuana use	Heavy ^ь marijuana use	Significance
No adjustments	95.9	93.6	89.0	.001

	No marijuana use	Light ^a marijuana use	Heavy ^ь marijuana use	Significance
No adjustments	95.9	93.6	89.0	.001
Adjust for: Home environment (HOME)	95.6	93.7	90.2	.01

	No marijuana use	Light ^a marijuana use	Heavy ^ь marijuana use	Significance
No adjustments	95.9	93.6	89.0	.001
Adjust for: Home environment (HOME)	95.6	93.7	90.2	.01
HOME, education	95.5	93.9	90.1	.01

	No marijuana use	Light ^a marijuana use	Heavy ^ь marijuana use	Significance
No adjustments	95.9	93.6	89.0	.001
Adjust for: Home environment (HOME)	95.6	93.7	90.2	.01
HOME, education	95.5	93.9	90.1	.01
HOME, education, race	95.1	94.1	91.5	ns

a < 1 joint/day; $b \ge 1$ joint/day

EFFECTS ON BEHAVIOR

RELATION BETWEEN PME & 10 YEAR BEHAVIOR

OFFSPRING SUBSTANCE USE ACROSS TIME

RELATION BETWEEN PME & 22 YEAR OFFSPRING MARIJUANA USE

Sonon et al., 2015

RELATION BETWEEN PME & PSYCHOTIC SYMPTOMS AT 22 YEARS

Day et al., 2015

At the Tip of an Iceberg: Prenatal Marijuana and Its Possible Relation to Neuropsychiatric Outcome in the Offspring

Alán Alpár, Vincenzo Di Marzo, and Tibor Harkany

Biological Psychiatry April 1, 2016; 79:e33-e45

Figure 2. Major dopaminergic pathways of the brain. In adolescence, mesocortical dopamine (DA) influence peaks in the prefrontal cortex (PFC) but dopamine activity becomes lower in the nucleus accumbens (Acc). The increased inhibition of PFC pyramidal cells results in a decreased excitatory glutamatergic output onto the subcortex, further amplifying the increased inhibitory dopaminergic tone on the PFC. Compared with nigrostriatal input, mesolimbic but especially mesocortical afferents are sensitive to environmental stressors/drug abuse that may escalate the dopamine imbalance between the cortical and subcortical integration centers in adolescent marijuana abuse. Altered line thickness across the named conditions denotes changes in strength of expression/effects. Glu, glutamate; SN, substantia nigra; Str, striatum; THC, Δ^9 -tetrahydrocannabinol; VTA, ventral tegmental area.

Adolescent marijuana exposure increases susceptibility to develop psychosis and other neuropsychiatric conditions. Even earlier exposures may do the same (or worse?).

EFFECTS OF PRENATAL MARIJUANA MATERNAL HEALTH COHORT

CONCLUSIONS

- Effects of prenatal marijuana exposure on behavior and cognition consistent across phases (and studies)
- Increased risk of marijuana use in offspring
- Pattern of effects consistent with teratologic model and mechanisms

IMPLICATIONS

- Different types/patterns of prenatal marijuana use
- Co-use of marijuana and tobacco is common
- Consider other characteristics associated with prenatal drug use
- Non-judgmental communication is important
- Understand woman's belief system

MATERNAL HEALTH PROJECT

EFFECTS OF PRENATAL MARIJUANA EXPOSURE ON COGNITIVE DOMAINS

<u>3 years</u>	<u>6 years</u>	<u>10 years</u>	<u>14 years</u>
Overall IQ - Short term memory - Verbal	Overall IQ - Short-term memory -Verbal	Achievement: - Reading - Spelling	Achievement: - Reading - Total
	-Quantitative	Memory – overall; - visual	
Day et al., 1994	Goldschmidt et al., 2008	Goldschmidt et al., 2004; Richardson et al., 2002	Goldschmidt et al., 2012

EFFECTS OF PRENATAL MARIJUANA EXPOSURE ON BEHAVIOR

<u>6 years</u>	<u>10 years</u>	<u>14 years</u>	<u>22 years</u>
Impulsivity	Inattention Impulsivity Activity		Psychotic symptoms
	Delinquency	Delinquency	Maladaptive adult roles
	Depression	Marijuana use	Marijuana use
Leech et al., 1999	Goldschmidt et al., 2000; Gray et al., 2005	Day et al., 2006, 2011	Day et al., 2015; Goldschmidt et al., 2016; Sonon et al., 2015