

FLORIDA STATE UNIVERSITY COLLEGE OF MEDICINE

Research Workshop Series # 6 Hypothesis Testing

What is a hypothesis test?

Introduction

• When you think of statistical methods, you probably think of specific hypothesis tests

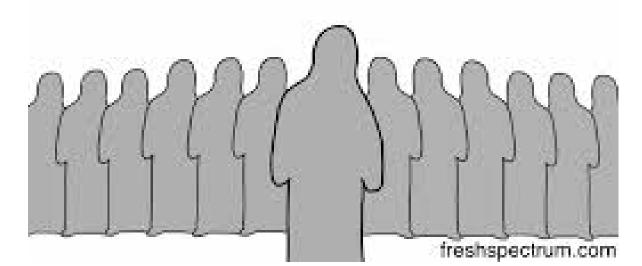
– T-tests, ANOVA, etc.

- Do you know what they are and how to interpret them?
- We will cover with general concepts about hypothesis testing

Null Hypothesis

- What we assume is true at the beginning
- Evidence required to reject this

The default, the status quo I am already accepted, can only be rejected The burden of proof is on the alternative I am the null hypothesis



Alternative Hypotheses

- What we propose as an alternative explanation
- Usually we are hoping to be able to claim is true
 - Whether or not we can actually do this depends on the evidence from our experiment

- H₀: survival time is equal for patients randomized to the new drug versus a control regimen
- H_a: survival time is not equal for the two groups

$$H_0: S_D(t) = S_C(t)$$
 for all *t*
 $H_a: S_D(t) ≠ S_C(t)$ for some *t*

Example: Oliviera et al Denture RCT

- H₀: mean masticatory performance is equal regardless of the denture adhesive used
- H_a: mean masticatory performance differs based on if a cream, powder, or no adhesive is used

$$H_0: \mu_c = \mu_p = \mu_{na}$$

H_a: at least one of the means differs from the others

What is a p-value?

P-values

Definition:

The p-value is the probability of observing data at least as extreme as the data in your experiment *assuming that the null hypothesis is true*

P-values

- If the p-value is small, then it is unlikely to see data like ours simply as a result of chance.
- In that case, we may question whether our original assumption, the null hypothesis, was true.
- If desired, based on rules decided beforehand, we may be able to say that we *reject the null hypothesis*.
- P-values may be reported *even if a strict binary decision is not required*.

Analogy: Trial By Jury

- Start by assuming the null.
- We need enough evidence to render the null questionable beyond a reasonable doubt.
 P-values quantify the doubt
- Just as you never prove that someone is innocent, you never prove that the null is true.

Analogy: Trial By Jury

- You have to make a decision based on available information.
 - Assume the null hypothesis is true and require extensive evidence to reject it.
- You will never know for sure if you made the right decision.

PROOF BEYOND A REASONABLE DOUBT

Hypothesis Test Outcomes

Null Hypothesis	Reject	Do not reject
True	Type 1 error 🔀	Correct
False	Correct	Type II error 🔀

There are two different ways to be wrong in hypothesis testing. Each has a different consequence.

Type I Errors

- A Type 1 error is when we reject the null hypothesis when the null hypothesis is true.
- This may mean we conclude that new drugs are effective when they are really comparable to a placebo, that a gene is associated with a disease when in reality it is not, etc.

Significance Level

- The significance level, α , of a test is the probability of a type I error
- We MUST set this value before seeing any data
 - Typically, in a single experiment with only one hypothesis test, $\alpha = 0.05$ is used.
 - This tradition is arbitrary!
 - Other (usually smaller) values may be used as long as they are set *a priori*.

Failing to Reject the Null

- If we fail to reject the null, then we simply do not have sufficient evidence to conclude make us question the null hypothesis
- We CANNOT prove that the null hypothesis is true
 - In fact it is usually false!
 - but it may be "just barely false"

Type II Errors

- A Type II error is when we fail to reject the null hypothesis when the null hypothesis is false
- This may mean we fail to conclude a new drug is effective when it may in fact be able to help patients
- Could easily happen if our sample size is too small

Trial by Jury Example

	Guilty	Not Guilty	
Innocent	Type 1 error 🔀	Correct 💉	
Guilty	Correct	Type II error 🔀	

Innocent until proven guilty: low type I error

Either H_0 or H_a is true but we don't know which one. Let's look at both possibilities for the truth and both possible conclusions:

Suppose H₀ is true

- Conclude that survival time is the same for patients on both regimens.
 - Fail to reject H₀: correct
 - We would not consider the new drug very helpful, and, for good reason, it would likely not go to market.
- Conclude that survival time differs among the groups.
 - Reject H_0 : Type 1 error.
 - We might consider the new drug better for patient survival. This error could introduce an ineffective drug into the marketplace.
 - Placebo?

Suppose H_a is true (and the drug was better)

- Conclude that survival time is the same for patients on both regimens
 - Fail to reject H₀: Type II error
 - We would not consider the new drug very helpful, and it would likely not go to market.
 - Patients who could have benefited will not have access to the drug
 - Exceptions/modifications are often made for "orphan drugs"
- Conclude that survival time differs among the groups
 - Reject H₀: Correct
 - We would consider the new drug better for patient survival.
 - The drug would have a chance of getting to market for patients

Connection between p-value and α

- If the p-value is less than *α*, then the test statistic is in the rejection region, and thus we reject the null hypothesis
- Otherwise, we do not reject the null hypothesis

Relationship between Hypothesis Testing and CIs

- If a $100(1 \alpha)$ % CI does not contain the null hypothesis parameter value, then the result must be statistically significant with $p < \alpha$
- If a 100(1 α)% CI does contain the null hypothesis parameter value, then the result must not be statistically significant at the α significance level

Power

- Power is equal to the probability that we reject the null hypothesis when the null hypothesis is false.
- The probability of making a type II error is denoted by β .

Power = P(reject
$$H_0 | H_a$$
) = 1 – β

Factors Affecting Power

- Power increases
 - If the effect size increases
 - If the sample size increases
- Power decreases
 - If the significance level is reduced
 - If the standard deviation of the individual observations increases

Factors Affecting Sample Size

- Sample size increases as
 - the population variance increases
 - Significance level is reduced
 - Required power increases
 - Effect size decreases

Trade off between Type 1 and Type II errors

- Consider 2 extreme (unrealistic) procedures

 Always reject the null: *α* will be large, *β* = 0
 Never reject the null: *β* will be large, *α* = 0
- In more practice, we do not have such drastic results, but we do observe something similar:
 As *α* decreases, *β* increases and vice versa
- What do we do?
 - Fix α , then choose the test and sample size that minimizes β (maximizes power)

Importance of Power

- If a study is underpowered, then there is a low probability that we will reject the null hypothesis even if the null hypothesis is truly false.
 - Waste of money!
 - Unethical

Statistical Significance vs. Clinical Significance

- Statistical significance is not the same thing as clinical or practical significance
- Clinically important results can be missed, classified and statistically not significant, due to a small sample size or large variability.
- Clinically negligible can be statistically significant because the study was large.

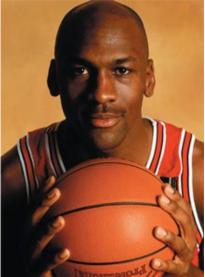
Not Statistically Significant: what does that mean?

- It is possible that the null hypothesis really is true, but this is not guaranteed.
- It simply means that we didn't have enough evidence to reject the null hypothesis beyond a reasonable doubt.
 - We could have failed to recruit enough patients for the desired power level
 - we could have excessive variability.

Example: non-significant result

- Consider this story from Vickers (2006a)
- A statistician shoots hoops with Michael Jordan. P-value = 0.07
- Should we really conclude that there is no difference in the proportion of times each one scores?

		Hits	Misses
	Michel Jordan	7	0
	Vickers (statistician)	3	4

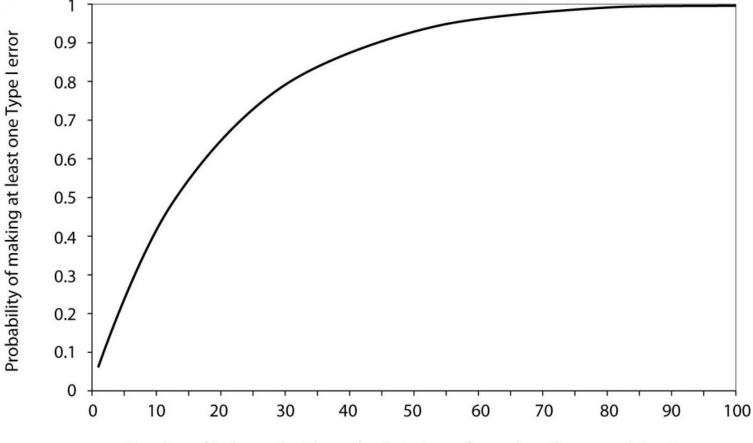


What is wrong with doing multiple hypothesis tests?

- Assume we are conducting *n* tests at 5% significance and all of the null hypotheses are true
- What is the overall type I error, called the family-wise error rate (FWER)?

P(at least one Type I error) = P(reject at least one test) = $1 - (1 - p)^n$

What is wrong with doing multiple hypothesis tests?



Number of independent hypothesis tests performed on the same dataset

What is wrong with doing multiple hypothesis tests?

Assume we are conducting *n* tests at 5% significance and all of the null hypotheses are true

- 5 tests: we have a 22.6% chance of rejecting at least one null hypothesis (and making a type I error).
- 20 tests: we have a 66.2% chance.
- 100 tests: we have a 99.4% chance.
- 300 tests: we have a 99.99998% chance!

Ubiquity of Multiple Comparisons

- Multiple Subgroups
- Multiple Endpoints
- Multiple Research Questions
- Multiple Hypotheses

Hypothesis Testing is Frequentist

- Hypothesis testing answers questions about the probability of making a certain conclusion assuming that one of the hypotheses is true
 - $-\operatorname{P}(\operatorname{reject} H_0 | H_0) = \alpha$
 - $P(\text{do not reject } H_0 | H_a) = \beta$

Hypothesis Testing and Bayesian Inference

 Intuitively, we want to know the probability that one of the hypotheses is true based on the conclusion that we made

 $- P(H_0 \text{ is true} | \text{reject } H_0) = ?$

• This requires the use of Bayesian inference

Discoveries

- Sometimes, rejecting the null hypothesis is called a *discovery*.
- We call it a discovery because we may (or may not) have discovered something scientifically interesting!
- Discoveries are valid in exploratory research. However, in confirmatory research, we need to beware of multiple comparisons.

False Discovery Rate

- Suppose you did a statistical test and rejected the null hypothesis.
- What is the probability that the rejection is a false positive?
- This question concerns FDR: the proportion of tests in which the null hypothesis is true out of all tests for which the null hypothesis is rejected.

 $FDR = P(H_0 \text{ is true} | \text{ reject } H_0)$

- FDR is a Bayesian calculation.
- FDR is often used in studies with large numbers of tests, e.g. genomics, proteomics

Considering the FDR

- Note that in general $FDR \neq \alpha$ because $P(H_0 \text{ is true} | \text{ reject } H_0) \neq P(\text{reject } H_0 | H_0 \text{ is true})$
- This is called the posterior distribution.
- We can't know the truth for any individual study, so we must propose a distribution called a *prior*.
- Once we decide on a prior, we can calculate the posterior.

Considering the FDR

- We can explore the FDR in theory by considering 10,000 hypothetical studies in different scenarios.
 - For each one, we assume α = 0.05 and β = 0.2.
 - We will look at three different priors:
 - $P(H_0) = 0.25$
 - $P(H_0) = 0.50$
 - $P(H_0) = 0.75$

FDR: $\alpha = 0.05, \beta = 0.2,$ P(H_0 true)=0.25

- The FDR is 125/6125, or about 2%
- In this case, about 2% of rejected hypotheses will be false discoveries.

	Reject H ₀	Do not reject <i>H</i> ₀	Total
H_0 true	125	2375	2500
H_0 false	6000s	1500	7500
Total	6125	3875	10000

FDR: $\alpha = 0.05$, $\beta = 0.2$, P(H_0 true)=0.5

- The FDR is 250/4250, or about 6%
- In this case, about 65 of rejected hypotheses will be false discoveries.

	Reject H ₀	Do not reject H ₀	Total
H_0 true	250	4750	5000
H_0 false	4000	1000	5000
Total	4250	5750	10000

FDR: $\alpha = 0.05, \beta = 0.2,$ P(H_0 true)=0.75

- The FDR is 375/2375, or about 16%
- In this case, about 16% of studies will be false discoveries.

	Reject H ₀	Do not reject H ₀	Total
H_0 true	375	7125	7500
H_0 false	2000	500	2500
Total	2375	7625	10000

Prior Distributions

- Sometimes we can use previous studies to generate reasonable prior distributions.
- Many times, we will not have previous data.
 - People often consider all possible values equally likely
 - This is called a non-informative prior
 - Results may be very sensitive to the choice of prior!

Reflections on Type 1 error, Power, and the FDR

- Always set the significance level of a test and set the sample size for desired power.
- Although the FDR is a quantity we would like to be able to calculate, doing so requires assumptions via Bayesian statistics.
 - How do you decide what prior to use?
 - Do you believe this type of inference is valid?
- Make sure you do not confuse Type I error with the false discovery rate!

More on the FDR

• Many scientists control the FDR as part of the experimental protocol. We will look at appropriate methods in a later lecture.

Proper Use of P-values

- P-values are just one piece of evidence
- ASA Statement on P-values
- Active area of research and discussion in statistics and science

Further Reading

- ASA Statement on P-values
- McShane and Gal (2017)
- <u>https://www.tonyohagan.co.uk/academic/p</u>
 <u>df/ExpertOpinion.pdf</u>

References

 Vickers, Andrew J. "Michael Jordan Won't Accept the Null Hypothesis: Notes on Interpreting High P Values." <u>Medscape</u> <u>Business of Medicine</u>: <u>Stats for the Health</u> <u>Professional</u>. May 15, 2006. Accessed August 13, 2014.

Thank you!

Questions & Discussion