Task Control Networks in Pediatric Anxiety and Obsessive-Compulsive Disorders

Targets for Neuroscience-Guided Intervention?

Kate D. Fitzgerald, M.D., M.S. Associate Professor Child and Adolescent Psychiatry University of Michigan Medical School

Anxiety: normal to disorder

Typical \rightarrow Atypical

Age	Normative Development	Anxiety Disorder
Pre-school	imaginary, objects/situations	specific phobias, separation anxiety
Grade School	health/harm, competence	GAD, OCD
Adolescence	social adequacy and performance	GAD, Social Phobia, Panic

Anxiety Disorders Start EARLY

	-	-				
	Age 3 Assessment		Age 6 Assessment			
Disorder	N	%	95% CI	N	%	95% CI
Any diagnosis ^a	127	27.5	23.5-31.9	123	26.6	22.8-30.8
Any emotional disorder	91	19.7	16.2-23.7	87	18.8	15.5-22.7
Any depression ^b	6	(1.3)	0.6-2.8	25	5.4	3.7-7.9
Major depression or dysthymia	2	0.4	0.1-1.6	15	3.2	2.0-5.3
Depression not otherwise specified	4	0.9	0.3-2.2	10	2.2	1.2-3.9
Any anxiety disorder	89	(19.3)	15.9-23.1	72	(15.6	12.6-19.2
Specific phobia	44	9.5	7.2-12.5	38	8.2	6.1-11.1
Separation anxiety	26	5.6	3.9-8.1	22	4.8	3.2-7.1
Social phobia	17	3.7	2.3-5.8	10	2.2	1.2-3.9
Generalized anxiety disorder ^b	18	3.9	2.5-6.1	7	1.5	0.7-3.1
Agoraphobia	15	3.2	2.0-5.3	8	1.7	0.9-3.4
Selective mutism	7	1.5	0.7-3.1	3	0.6	0.2-1.9
Any behavioral disorder	51	11.0	8.4-14.3	57	12.3	9.7-15.7
ADHD ^b	11	2.4	1.3-4.2	25	5.4	3.7-7.9
Oppositional defiant disorder	47	10.2	7.7-13.3	41	8.9	6.6-11.8
Two or more diagnoses	42	9.1	6.8-12.1	41	8.9	6.6-11.8

Buffered et al, 2012

Who do these children grow up to be?

1 in 3 AD by adolescence!

Merikangas et al, 2010

Early internalizing occur along a continuum that predicts risk for later internalizing

Baseline Internalizing and Externalizing CBCL scales predicting subsequent psychiatric disorders.

	Externalizing T-Score		Internalizing T-Score		
Psychiatric Disorder	Coefficient[95% Confidence Interval]	p-value	Coefficient[95% Confidence Interval]	p-value	
* Agoraphobia	-0.06 [-0.15,0.03]	0.21	0.09 [0.05,0.14]	< 0.001	
★ Generalized Anxiety Disorder	-0.04 [-0.09,0.01]	0.11	0.09 [0.04,0.13]	< 0.001	
★ Separation Anxiety Disorder	0.00 [-0.06,0.05]	0.88	0.08 [0.04,0.13]	< 0.001	
Specific Phobia	0.03 [-0.02,0.08]	0.17	0.04 [-0.01,0.10]	0.12	
★Social Phobia	-0.03 [-0.08,0.02]	0.23	0.07 [0.02,0.11]	0.005	
Panic Disorder	-0.06 [-0.15,0.03]	0.19	0.03 [-0.05,0.10]	0.46	
Disruptive Behavior Disorders	0.10 [0.03,0.16]	0.004	0.01 [-0.04,0.06]	0.72	
Major Depressive Disorder	0.10 [0.01,0.18]	0.03	-0.01 [-0.07.0.04]	0.57	

N = 248 child at familial risk Baseline: 5.0 ± 2.7 years Follow up: 10.6 ± 3.1

*CBCL Internalizing predicts later ADs, but weak predictor (low sensitivity)

*Identify better, mechanistically based predictor that might also serve as target?

Petty et al, 2009

1.00

Electrophysiologic response to errors: Increased ERN in Anxiety/OCD

Anterior Cingulate Cortex (ACC)

ERN in Anxiety/OCD: Functional Significance?

• Affective response to errors

- Worse than expected outcome
- Large ERN = affective hypersensitivity to errors?
- A bad thing? (drive OCD)
 - Intrusive sense that "something is wrong" characterizes OCD symptoms

• Errors/Interference

- Mismatch between actual and intended response
- Large ERN = make up for inefficiency elsewhere in errorprocessing network?
- A *good* thing? (compensate for OCD)
 - Does ERN overcome deficient capacity to adjust behavior? (move on from anxious thoughts appropriately identified as "thinking errors")

Hester et al, 2004

fMRI of Error Response in adult OCD Does spatial localization clarify function?

Task Control Networks

Salience

Central Executive

Salience Network in adult OCD: Hyperactivity of al, vmPFC

Stern et al, 2011

Task control networks in pediatric OC, anxiety disorders

Meta-analysis: Task Control Networks in OCD

<u>Errors</u>: ↑ Salience Network

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0

0.05

Inhibitory control * : ↓ Salience, Central Executive Networks

*impaired inhibitory control performance

Norman et al, under revision

Norman et al, under revision

Hyperactive Salience Network : Compensatory?

Manipulating Task Control Networks

CBT as **Probe**

OCD: Task control network function & CBT outcome

- Randomized clinical trial: CBT vs. Stress Management Training (SMT)
- 60 adolescent (13-17 yrs), 60 adult (25 –40 yrs) OCD
 -Half medicated, half unmedicated
- 30 adolescent, 30 adult HC
- Pre- to post- therapy imaging: fMRI, resting state, DTI

OCD: CBT Effect

OCD: Better CBT outcome predicted by TCN function

INTERFERENCE: ↑ Salience, Central executive network (right al/IFG, left dIPFC, dACC); pre-CBT, n = 32

Anxiety: Task control network function & CBT outcome

- Randomized clinical trial: CBT vs. Relaxation Mentorship Training (RMT)
- 280 youth (7-18 years)
 - 210 Anxious (SAD, SoPho, GAD, etc): 2/3 CBT, 1/3 RMT
 - 70 HC
- Pre- to post- therapy imaging: fMRI, resting state, DTI

Anxiety: Task Control Network Activations to MSIT

Regions of interest: Interference-processing

Salience Network

Central Executive Network

Anxiety: TCN as Predictor of CBT response

Anxiety: TCN as mechanism of change?

Interference: ↑∆*Central executive network*

Interference: $\downarrow \Delta Salience$ network

Summary: fMRI-CBT in OCD/Anxiety

- Pre-CBT: greater SN predicts better response
- CEN *increase* \rightarrow anxiety decrease
 - Increased engagement left superior parietal cortex associated with reduced anxiety after CBT
- SN (CO) network *decrease* \rightarrow anxiety decrease
 - ~Decreased engagement right anterior insula associated with reduced anxiety after CBT
- Distinction between FP and cingulo-opercular (CO) networks?
 - Differential roles of FP and CO in generation and reduction symptoms

Manipulating Task Control Networks

Cognitive Training, the ERN and Early Childhood Anxiety

Error-related Negativity (ERN)

ERN can be detected EARLY

3 years

Grammer et al, 2014

ERN & the Continuum of Anxiety

ERN α Internalizing: Gender Effect

Table 2. Results of the Meta-Analysis

Sample	d	k	Ν	р	95% CI
All samples	361	37	1,460	< .001	-0.496; -0.225
OC symptoms ^a	637	14	455	< .001	-0.836; -0.439
Anxiety symptoms ^a	209	23	1,005	.005	-0.370; -0.049
OC-men ^b	703	7	202	< .001	-0.999; -0.406
OC-women ^b	584	7	253	< .001	-0.852; -0.316
Anxiety-menc	.060	11	411	.57	-0.144; 0.264
Anxiety-women ^c	362	12	594	< .001	-0.533; -0.190

Moser et al, 2016

ERN: Development Differs by Gender

Davies et al, 2004

Study Questions

- Does ERN predict internalizing sxs in early childhood (4 9 years)?
- How do age and/or gender moderate the ERN-internalizing relationship in young children?

Sample Characteristics

- N = 56 children
- Ages 4 9 years
- Male and Female
- Recruitment sources
 - Longitudinal sample of children at familial risk for internalizing (78%)
 - UM Child Psychiatry Clinics (12%)
 - UM General Pediatrics (10%)

Study Overview

- Parent report on CBCL Internalizing Subscale
 - Broad band scale comprised of social withdrawal, somatic complaints and anxiety/depressive narrow band syndromes
 - 27 questions (e.g. Fearful, Too Neat, Little Affect)

Achenbach & Rescorla, 2001

• Error-eliciting Go No Go Task for young children

Grammer et al, 2013

- ERN: 32 electrode cap, Biosemi machine
- Linear Regression:
 - ERN, Age, Gender and interactions as predictors of CBCL Internalizing

RDoC Distribution of Internalizing

Internalizing by Age and Gender

Age Group*	Gender	N	CBCL t-score**
YOUNG 4 – 6 years (n = 23)	F	11	50.3±12.8
OLD 7-9 years (n = 26)			45.6±6.8

*Data loss: <6 errors for 6 children(5.44 +/-.76 yrs, F); 1 ERN outlier (9.42 M); 1 CBCL missing (7.30 M). **p's < .29

Zoo Game

Zookeeper Melissa

Orangutan helper

Results: Behavioral

Age Group	Gender	Error Trials*	Correct Go Trial RTs**
YOUNG 4 – 6 years			581±55
OLD 7-9 years (n = 26)		18.0±6.7	

*More errors in younger than older (p=0.03), M than F (p=0.001)

**Slower RTs in younger than older (p = .02)

ERN increase with age

Age *B* = -.29, p = .055 (controlling gender, *p* = .89; NoGo errors, *p* = .25)

ERN Predicts Internalizing

...BUT, predicts *differently* in preschool-aged girls than preschool-aged boys or school-aged girls

Age Group (Young, Old) x Gender x ERN: *B* = -.23, p = .001

Implications for Translation?

- Could ERN/TCN modulation reduce anxiety and/or risk for internalizing in early childhood?
- Does ERN/TCN need to be targeted differently in different children, depending on age and gender?

Next Steps

Stopping Anxiety Early Can we help kids to "grow out" of anxiety?

Kidpower: Brain training to reduce anxiety

Effortful Control

Thank you!!!

- Steve Taylor, M.D.
- Yanni Liu, Ph.D.
- Luke Norman, Ph.D.
- Christopher Monk, Ph.D.
- Luan Phan, M.D.
- Tim Johnson, Ph.D.
- Maria Muzik, M.D., M.S.
- Kate Rosenblum, Ph.D.

- R01 MH102242
- R01 MH107419
- One Mind Institute