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Spinal Cord Injury

24% car accidents; >25% accidents working; gunshots, sporting accidents, etc.
0.4% of the US population or 1,275,000 people paralyzed due to SCls

Lifetime cost of SCI: $0.7-3 million for 25 year old patient

Cost of enrollment in a clinical trial: $50,000 - $100,000/person

Projected cost of phase 2 clinical trial: $5-10 million/candidate drug

By developing therapies for patients and preventing potential new injuries,
USA would save $400 billion on future direct and indirect lifetime costs

Christopher & Dana Reeve Foundation

Currently no effective treatments for SCI



Current Research: Key Principles of Spinal Cord Repair

Neuroprotection—protecting surviving nerve cells from further damage

Regeneration—stimulating the regrowth of axons and targeting their
connections appropriately

Cell replacement—replacing damaged nerve or glial cells

Retraining CNS circuits and plasticity to restore body functions

Improving microenvironment for regeneration

http://www.ninds.nih.gov/disorders/sci/sci.htm



MRI of Cervical Spinal Cord on the T2-weighted Image

Intramedullary

hemorrhage extensive gliosis

Secondary injury

7h after injury 3 months after injury

Sudo et al. 2006



Mechanisms of Injury

Primary Injury
1 - Loss of Neurons/Axons
2 - Demyelination

Secondary Injury

1 - Loss of Neurons/Axons

2 - Demyelination

3 - Inflammation

4 - Reactive Oxidative Damage
and the Astrocytiic Glial Scar

5 - Cyst Formation

Activated Astrocytes

Infiltrating Lymphocytes

Activated Monocytes

Phagocytic Monocytes

Neurons

Salewski et al. 2013.




Main Leukocytes
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Elie Metchnikoff, Russian Pathologist (1845-1916)
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http://animatedhealthcare.com

His description of mobile cells battling invading pathogens was visually immediate and dramatic.



Selected Achievements of Metchnikoff

eDescription of phagocytosis as an active process and its role in host defense, across
a wide range of organisms

eDescription of natural immunity to infection (host-pathogen interaction with
phagocytes playing a central role)

eSignificance of inflammation as a beneficial process
eDescription of cell migration and leukocyte recruitment
*Going from observations to hypothesis, for experimental testing

ePublic outreach— popular writings, health promotion

Gordon. Eur. J. Immunol. 2008. 38: 3257



Macrophage

Functions of Macrophage:
* Migration

* Phagocytosis

* Presentation of Ag

* Secretion

Microglia

and antigen
presentation
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macrophage
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* Recognition and removal
of enteric pathogens
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macrophage | and microbiota

“Lymph node Antigen capture
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Nature Reviews | Immunology



Macrophage: the Professional Phagocyte

Apoptotic

neutrophil
Inhibited by
aminosugars
anionic site / basic amnioacids
Q2% heparin
Inhibited by high [H*]
RGDS
EDTA Thrombospondin
Vn, Fn, TSP
anti-c,, mAbs Inhibited by
anti-p; mAb EDTA
TSP

anti-TSP mAbs
anti-CD36 mAbs

Macrophage

Sir John Sawvill

both VnR and CD36
must be engaged for
ingestion

Dead men may tell no tales,
but dead cells certainly do,
the macrophage having the last word. ------ Sir John Savill



Signals that Regulate the Engulfment of Apoptotic Cells
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Injured Spinal Cord

Desert?
Black hole?
Volcano?

Epicenter of injury Epicenter of injury

12w after SCI

ey INF
6w after S

Lu et al. 2007. Exp. Neurol



Macrophages and Microglia in CNS
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Mouse Models

1. C57BL/6-RFP Bone Marrow (BM) Chimeric mice
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% After 4 weeks

C57BL/6-RFP BM chimeric mouse
C57BL/6-

2. CX3CR1%FP/* (heterozygous) mice:
- GFP inserted in the CX3CR1 locus in one allele
- A normal allele enables the continued expression of CX3CR1 (maintains functional CX3CR1)



Bone Marrow-derived Macrophages (BMDM)
in Injured Spinal Cord
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Macrophage Activation

Monocyte
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Macrophages in Injured Spinal Cord
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Macrophages in Injured Spinal Cord
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Wang et al. Glia. 2015



Macrophage Polarization in the Injured Spinal Cord

Spinal cord contusion injury
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A Severity-Dependent Expression of Inflammatory
Mediator in Cerebrospinal Fluid (CSF) Post-SCI
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Grade A: motor and sensory complete paralysis
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Grade C: incomplete motor and sensory paralysis
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Myelin debris can be generated
€ig immediately after injury

Normal Compressed Degeneration

Composed of /ipids and proteins (myelin basic protein, MBP; proteolipid protein, PLP;
myelin-associated glycoprotein, MAG; myelin-oligodendrocyte glycoprotein, MOG)

Myelin debris is an inhibitory signal for regeneration
Myelin debris can stimulate inflammation

Axons are directly exposed to inflammatory environment



Macrophages Uptake Myelin Debris

macrogRage
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Wang et al. Glia. 2015



Lipid Accumulation in Macrophages at Injury Site

Foamy cells

rostral

4w

IMacrophage

SCI

Wang et al. Glia. 2015



Why do these lipids remain in the M¢?

Is the path for lipids to leave blocked?



Lipid transporters: ABCA1 and ABCG1
lipids

7

| 3
Y\
\ \
’\__‘ \\. “.‘. ! )
CD36 \ \ 2 %‘

/):;_--,:-};_ ApoAl
< " ABCA1
/ ABCAI
| ABCG1 |
! J Apn[
, ' -
3 .o
Chl o/ .
\QQ ABCG1 &
. ‘Q:\‘\‘N
((ﬂ(S\, X @:3
PPAR: peroxisome proliferator receptor o (5\_}, b

ABCA1: ATP-binding cassette transporter A
LXR: liver X receptor

RXR: retinoid X receptor Demers et al. PPAR Research. 2008.



Macrophages at Lesion Site

macrophage Macrophage lipid gatekeeper

Wang et al. Glia. 2015



Do Myelin-laden Macrophages Have Normal Function?

Phagocytic capacity
Can mye-M¢ eat more?

For example: apoptotic neutrophils




Neutrophil
Infiltration

e Short lifespan - 12 hours

* Presentin blood (60-70%
of WBC) (Not found in
healthy tissues)

* Granules in the
cytoplasm are
responsible for killing
microbes (primary and
secondary granules)

Microglia

1d after SCI

Myeloperoxidase
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Apoptosis and Phagocytosis

Living CeIIs
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Our bodies produce 5-10 X 101° neutrophils every day. Effective removal of
apoptotic neutrophils is important for “making space” for living cells and for
maintaining the function of tissue.



ic Cells

A Love Story

Macrophages and Apoptot

Apoptotic cell .'



Signals for Apoptotic Cell Clearance

* Come here signals: chemoattactants (MCP-1)

* Find me signals: fractalkine, ATP and UTP (apoptotic cells attract
macrophages are the beginnings of fatal attraction)

e Eat me signals (Phosphatidylserine):
 Don’t go away signals (MIF)

Apoptotic cells make an active effort to attract phagocytes.

After-the-meal : clearance of apoptotic cells is “immunological silent”



However, their bond can be easily broken...



Interaction of M¢, Neutrophils (PMN) and Myelin Debris
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The Tragedy of the Neutrophil

Injury site (3d post SCI)

Neutrophil

No one wants me...
I feel like dying.

TUNELM¢

1w after SCI

@ () The horrible consequence of
@ the broken relationship

@Qs\ ‘

Tissue damage




NSCs Injection into Injured vs. Normal Spinal cord

Injured cord normal cord

at normal cord




Distribution of Injected Naive M¢ and Mye-M¢
in the Normal Cord

Naive,M¢

Normal spinal cord Normal spinal cord Spinal cord injury

5 days after injection



Inflammation in the Normal Cord Injected With
Naive- vs. Myelin-macrophages

5 days after injection

Naive M¢




Spinal Cords Staining for GFAP
to Quantify Lesion Volume

Lesion area: GFAP-
SCl

Gliosis: GFAP+++

5 days after cell injection



Spinal Cords Staining for Myelin Basic Protein (MBP)
to Quantify Demyelination Area

Naive M¢

on area

Normal cord




Mechanisms of Injury

Primary Injury Secondary Injury
1 - Loss of Neurons/Axons 1 - Loss of Neurons/Axons
2 - Demyelination 2 - Demyelination

3 - Inflammation

4 - Reactive Oxidative Damage
and the Astrocytiic Glial Scar

5 - Cyst Formation

Mechanisms of Secondary Injury

e Vascular change

e Free radicals

* Excitotoxicity

e Calcium influx

* Cell death

* Myelin-laden macrophages and impaired phagocytic capacity

RS
%

Activated Astrocytes

Infiltrating Lymphocytes
Activated Monocytes

Phagocytic Monocytes

Neurons

Salewski et al. 2013.

This is the first example of a single cell population that can cause pathogenic change



Exosomes and Their Interactions with Recipient Cells
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Mye-M¢ Exosome Secretion and its Possible Roles in
Communication With Recipient Cells in Spinal Cord
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Exosome Secretion from Mye-M¢

Exosome Cell lysate
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Characterization of Exosomes from Macrophages
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The Effect of Exosomes on Regulation of
NO Production in Naive Macrophages
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The Effect of Exosomes on Regulation of NSC Differentiation

Control



Exosomes Induce M¢ Infiltration in Normal Cord

Exosomes from naive macrophages

Exosomes

Mouse 1 Mouse 2

1w after SCI



Exosomes Induce Reactive Astrocyte (gliosis)
in Normal Cord

Exosomes from naive-M¢ Exosomes from Mye-M¢

2w after SCI



Does targeting mye-M9...

inhibit secondary injury?
promote motor neuron function recovery?



Exploring New Therapeutic Strategies
Targeting Myelin-Laden Macrophages In SCI

Inhibition of circulating monocyte migration?

* Promotion of M2 M¢ activation

* Pharmacologic manipulation of ABCA1 and M¢ lipid efflux in vivo
* Promotion of M¢$ emigration

* Transplantation of “appropriate or beneficial” M¢ (anti-
inflammatory macrophages with intact phagocytic capacity)



Strategy |

Pharmacologic manipulation of ABCA1
and macrophage lipid efflux in vivo



Lipid Transporters: ABCA1 and ABCG1
lipids
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Compound A Rescues Myelin-Inhibited Arginase-1
Activity
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Compound A Enhances Lipid Efflux and Apoptotic Cell Uptake
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Cell Mean for BMS
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Strategy I

Transplantation of “appropriate or beneficial” M¢
(anti-inflammatory M¢ with intact phagocytic capacity)



MBP ng/1x10* cells
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GFP-M¢ Injection in the Injured Spinal Cord

WT naive M¢ MIF/-naive M¢
Injected M@

7 days after SCI



GFP-macrophage Injection in the Injured Spinal Cord
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Effect of Macrophage on Locomotion after SCI
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| Function
@ recovery
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Myelin-laden Macrophages: l Regeneration
The True Villain Behind Spinal Cord Injury Normal function



CNS Disorders that Generate Myelin Debris
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