Myelin-laden Macrophage: The True Villain Behind Spinal Cord Injury

Yi Ren

Department of Biomedical Sciences Florida State University College of Medicine

What is a Spinal Cord Injury?

Spinal Cord Injury

- 24% car accidents; >25% accidents working; gunshots, sporting accidents, etc.
- 0.4% of the US population or 1,275,000 people paralyzed due to SCIs
- Lifetime cost of SCI: \$0.7-3 million for 25 year old patient
- Cost of enrollment in a clinical trial: \$50,000 \$100,000/person
- Projected cost of phase 2 clinical trial: \$5-10 million/candidate drug
- By developing therapies for patients and preventing potential new injuries,
 USA would save \$400 billion on future direct and indirect lifetime costs

Christopher & Dana Reeve Foundation

Currently no effective treatments for SCI

Current Research: Key Principles of Spinal Cord Repair

- Neuroprotection—protecting surviving nerve cells from further damage
- Regeneration—stimulating the regrowth of axons and targeting their connections appropriately
- Cell replacement—replacing damaged nerve or glial cells
- Retraining CNS circuits and plasticity to restore body functions
- Improving microenvironment for regeneration

http://www.ninds.nih.gov/disorders/sci/sci.htm

MRI of Cervical Spinal Cord on the T2-weighted Image

Intramedullary hemorrhage Primary injury

7h after injury

3 months after injury

Sudo et al. 2006

Mechanisms of Injury **Activated Astrocytes** Primary Injury Secondary Injury Infiltrating Lymphocytes 1 - Loss of Neurons/Axons 1 - Loss of Neurons/Axons 2 - Demyelination 2 - Demyelination **Activated Monocytes** 3 - Inflammation 4 - Reactive Oxidative Damage Phagocytic Monocytes and the Astrocytiic Glial Scar 5 - Cyst Formation Neurons

Salewski et al. 2013.

Main Leukocytes

Elie Metchnikoff, Russian Pathologist (1845–1916)

Nature Reviews | Molecular Cell Biology

Nature Reviews | Molecular Cell Biology

http://animatedhealthcare.com

His description of mobile cells battling invading pathogens was visually immediate and dramatic.

Selected Achievements of Metchnikoff

•Description of phagocytosis as an active process and its role in host defense, across a wide range of organisms

•Description of natural immunity to infection (host-pathogen interaction with phagocytes playing a central role)

- •Significance of inflammation as a beneficial process
- •Description of cell migration and leukocyte recruitment
- •Going from observations to hypothesis, for experimental testing
- Public outreach popular writings, health promotion

Gordon. Eur. J. Immunol. 2008. 38: 3257

Macrophage

Functions of Macrophage:

- Migration
- Phagocytosis
- Presentation of Ag
- Secretion

Macrophage: the Professional Phagocyte

Checroun et al. 2006

Sir John Savill

Dead men may tell no tales, but dead cells certainly do, the macrophage having the last word. -----Sir John Savill

Signals that Regulate the Engulfment of Apoptotic Cells

De Almeida & Linden. Cell Mol. Life. Sci. 2005. 62.

Injured Spinal Cord

Macrophages and Microglia in CNS

Proia & Wu. JCI. 2004. 113.

Mouse Models

1. C57BL/6-RFP/GFP Bone Marrow (BM) Chimeric mice

2. CX3CR1^{GFP/+} (heterozygous) mice:

- GFP inserted in the CX3CR1 locus in one allele
- A normal allele enables the continued expression of CX3CR1 (maintains functional CX3CR1)

Bone Marrow-derived Macrophages (BMDM) in Injured Spinal Cord

Macrophage Activation

Macrophages in Injured Spinal Cord

Kigerl et al. J Neuronsci. 2009

Macrophages in Injured Spinal Cord

GFP-M2 injection after SCI

Wang et al. Glia. 2015

Macrophage Polarization in the Injured Spinal Cord

Nature Reviews | Neuroscience

David & Kroner. 2011. 12: 382

A Severity-Dependent Expression of Inflammatory Mediator in Cerebrospinal Fluid (CSF) Post-SCI

American Spinal Injury Association (ASIA) to classify SCI patients Grade A: motor and sensory complete paralysis _____ Grade B: motor complete, sensory incomplete paralysis _____ Grade C: incomplete motor and sensory paralysis _____

Myelin

- Composed of *lipids* and *proteins* (myelin basic protein, MBP; proteolipid protein, PLP; myelin-associated glycoprotein, MAG; myelin-oligodendrocyte glycoprotein, MOG)
- Myelin debris is an inhibitory signal for regeneration
- Myelin debris can stimulate inflammation
- Axons are directly exposed to inflammatory environment

Macrophages Uptake Myelin Debris

Myelin/macrophage/nucleus

Wang et al. Glia. 2015

Lipid Accumulation in Macrophages at Injury Site

Foamy cells

Wang et al. Glia. 2015

Why do these lipids remain in the $M\phi$?

Is the path for lipids to leave blocked?

Lipid transporters: ABCA1 and ABCG1

RXR: retinoid X receptor

Macrophages at Lesion Site

Do Myelin-laden Macrophages Have Normal Function?

Phagocytic capacity

Can mye-M¢ eat more?

For example: apoptotic neutrophils

Neutrophil Infiltration

- Short lifespan 12 hours
- Present in blood (60-70% of WBC) (Not found in healthy tissues)
- Granules in the cytoplasm are responsible for killing microbes (primary and secondary granules)
- Myeloperoxidase Leukocyte sialoglycoprotein (CD43) Phospholipase A2 Acid hydrolases Elastase α and β defensins Neutral serine proteases Bacterial/permeability-increasing protein Lysozyme Cathepsin G Specific (secondary) granula Azurophilic (primary) granula

(:)

 \odot

... $(\cdot \cdot)$

MicrogliaNeutrophils

Specific (tertiary) granula

Gelatinase Lactoferrin Lipocalin Lysozyme LI37 MMP8

Cathelicidin Collagenase Lactoferrin Cd66b

Secretory vesicles

Albumin Complement receptor type 1 (CD35)

Apoptosis and Phagocytosis

Our bodies produce 5-10 \times 10¹⁰ neutrophils every day. Effective removal of apoptotic neutrophils is important for "making space" for living cells and for maintaining the function of tissue.

Macrophages and Apoptotic Cells: A Love Story

Signals for Apoptotic Cell Clearance

- **Come here signals:** chemoattactants (MCP-1)
- Find me signals: fractalkine, ATP and UTP (apoptotic cells attract macrophages are the beginnings of fatal attraction)
- Eat me signals (Phosphatidylserine):
- Don't go away signals (MIF)

Apoptotic cells make an active effort to attract phagocytes.

After-the-meal : clearance of apoptotic cells is "immunological silent"

However, their bond can be easily broken...

Interaction of $M\phi$, Neutrophils (PMN) and Myelin Debris

Wang et al. Glia. 2015

The Tragedy of the Neutrophil

NSCs Injection into Injured vs. Normal Spinal cord

Distribution of Injected Naïve M ϕ and Mye-M ϕ in the Normal Cord

Normal spinal cord

Normal spinal cord

Spinal cord injury

5 days after injection

Inflammation in the Normal Cord Injected With Naïve- vs. Myelin-macrophages

5 days after injection

Spinal Cords Staining for GFAP to Quantify Lesion Volume

Lesion area: GFAP-

Gliosis: GFAP+++

5 days after cell injection

Spinal Cords Staining for Myelin Basic Protein (MBP) to Quantify Demyelination Area

Normal cord

Mechanisms of Injury

Primary Injury 1 - Loss of Neurons/Axons 2 - Demyelination

Secondary Injury

- 1 Loss of Neurons/Axons
- 2 Demyelination
- 3 Inflammation

4 - Reactive Oxidative Damage and the Astrocytiic Glial Scar

5 - Cyst Formation

Activated Astrocytes Infiltrating Lymphocytes

Activated Monocytes

Salewski et al. 2013.

Mechanisms of Secondary Injury

- Vascular change
- Free radicals
- Excitotoxicity
- Calcium influx
- Cell death
- Myelin-laden macrophages and impaired phagocytic capacity

This is the first example of a single cell population that can cause pathogenic change

Exosomes and Their Interactions with Recipient Cells

- Were considered as rubbish bags
- Exosome size: 30-150nm
- Can transport proteins, mRNA/miRNA, lipids
- Participate in pathophysiological processes

Mye-M¢ Exosome Secretion and its Possible Roles in Communication With Recipient Cells in Spinal Cord

Exosome Secretion from Mye-M ϕ

Characterization of Exosomes from Macrophages

The Effect of Exosomes on Regulation of NO Production in Naïve Macrophages

The Effect of Exosomes on Regulation of NSC Differentiation

Control

exosomes from naïve $M\phi$ ex

exosomes from Mye-Mø

Exosomes Induce M\u00f8 Infiltration in Normal Cord

Exosomes from naïve macrophages

Exosomes from mye-macrophages

Mouse 1

Mouse 2

1w after SCI

Exosomes Induce Reactive Astrocyte (gliosis) in Normal Cord

Exosomes from naïve-Mø

Exosomes from Mye-Mø

2w after SCI

Does targeting mye-M\$...

inhibit secondary injury? promote motor neuron function recovery?

Exploring New Therapeutic Strategies Targeting Myelin-Laden Macrophages In SCI

- Inhibition of circulating monocyte migration?
- Promotion of M2 M ϕ activation
- Pharmacologic manipulation of ABCA1 and Mø lipid efflux *in vivo*
- Promotion of $M\phi$ emigration
- Transplantation of "appropriate or beneficial" Mφ (antiinflammatory macrophages with intact phagocytic capacity)

Strategy I

Pharmacologic manipulation of ABCA1 and macrophage lipid efflux *in vivo*

Lipid Transporters: ABCA1 and ABCG1

Compound A Rescues Myelin-Inhibited Arginase-1 Activity

Compound A Enhances Lipid Efflux and Apoptotic Cell Uptake

Compound A Significantly Increased BMS Score

4 weeks after treatment

Strategy II

Transplantation of "appropriate or beneficial" $M\phi$ (anti-inflammatory $M\phi$ with intact phagocytic capacity)

Macrophage Migration Inhibitory Factor (MIF) KO Macrophages

4W after SCI

GFP-M $\phi\,$ Injection in the Injured Spinal Cord

7 days after SCI

GFP-macrophage Injection in the Injured Spinal Cord

3d after injection

rostral

caudal

Effect of Macrophage on Locomotion after SCI

CNS Disorders that Generate Myelin Debris

Cause of Paralysis Among US Adults

Christopher & Dana Reeve Foundation

Ren Lab

Zhijian Cheng Li Sun Wenjiao Tai Xi Wang Cynthia Vied Dale Bosco Alyssa Rolfe Mark Rider Stephanie Hurwitz Xin Sun Hema Renganathan

Collaborators

David Meckes (FSU) Jinjiao Guan (FSU) Michael Blaber (FSU) Richard Bucala (Yale University) Wise Young (Rutgers University) Jianqing Fan (Princeton University)

NIH R01 GM100474 NSF DMS-0714589 NJ Commission on SCR CSCR13IRG006 FSU College of Medicine **Core facilities** Ruth Didier Kate Calvin Roger Mercer

FSU College of Medicine