Grants help FSU researchers commercialize their discoveries

Three researchers at Florida State University are recipients of a total $62,000 in grants this month to explore the commercial business potential of their discoveries.

Alexey Kovalev, Branko Stefanovic and Mei Zhang were candidates for the funding provided through the FSU Office of Research under GAP, the university's Grant Assistance Program. GAP competitions are held each spring and fall, with an independent panel of reviewers hearing the presentations and selecting several for awards.

"We've hired some really outstanding faculty," said Gary Ostrander, FSU's vice president for research. "And this program can really help move their research to the next level and let them explore business opportunities related to that work. It's an important part of what we're all about at a large research-focused public university like FSU."

Mei Zhang, associate professor of industrial and manufacturing engineering, received $27,500 to continuing testing and development work on a lightweight, elastic nanocarbon foam that can also conduct electricity.

Zhang says the foam has many potential applications, including use as an electrode for a battery or as a sensor. It has thermal and conductive properties that make it a candidate for products in such fields as aerospace, electronics and bioengineering.

Branko Stefanovic, a scientist in the College of Medicine, received $28,500 in support of his work on a drug that combats hepatic fibrosis.

As incidents of obesity have increased in the population, so has the number of cases of fibrosis, one of several chronic diseases that results from the higher level of collagen in the body.

Stefanovic and his team discovered a chemical compound that he believes can be made into a drug that doctors can use to help patients control or reverse their bodies' production of collagen. There is no drug on the market now to effectively treat fibrosis, which indicates a market opportunity for Stefanovic, according to FSU.

Alexey Kovalev got a grant of $6,000 for his material that is transparent and bullet proof, but has better structural properties and can be replaced more easily than glass panels. He is an assistant in research for condensed matter science at the National High Magnetic Field Laboratory.

The barrier is made from aluminum and acrylic materials and is much cheaper to repair than traditional bullet-proof glass. Kovalev's product consists of sections that fit together to form a solid barrier, and it can be assembled or taken apart in the field.

John Fraser, assistant vice president for research and economic development at FSU, is executive director of the Office of Commercialization. Through GAP, a researcher's discovery may become the tool to solve a problem, he said. "If we're lucky, it will turn into a product that can help people."

Read or Share this story: http://on.tdo.com/1igmkSI